Issue
Korean Journal of Chemical Engineering,
Vol.37, No.4, 623-632, 2020
Catalytic oxidation of sulfur dioxide over α-Fe2O3/SiO2 catalyst promoted with Co and Ce oxides
Hematite (α-Fe2O3) is a promising alternative to the catalysts currently used due to its low cost, fairly good activity and environmentally friendly properties. In this study, α-Fe2O3/SiO2 nanocatalysts promoted with cobalt and cerium (Co3O4-CeO2-α-Fe2O3/SiO2) were prepared via wet co-impregnation method, and the effects of promoters on catalytic performances for SO2 oxidation at different temperatures, SO2 concentrations, cycle numbers, catalytic stability as well as catalyst charging were investigated. The results indicated that SO2 conversion rose with the increasing of catalyst charging and SO2 concentration. Also, the as-prepared catalyst had the maximum SO2 conversion at the reaction temperature of 500 oC, excellent catalytic recyclability and activity stability. Its physicochemical and redox properties were characterized by XRD, BET, SEM, FT-IR and XPS. The results of XRD and FT-IR spectra confirmed that the formation of Ce2FeO4 network in the Co-Ce co-doped catalysts proved the promoting effect of cerium on higher valence state of the active ingredient. The N2 adsorption/desorption results evidenced that cerium could increase the proportion of mesoporous, and the XPS spectra indicated that cobalt and cerium in the catalysts could increase the available oxygen (Oβ/Oα) for the redox reaction. Due to its excellent low onset temperature, fairly good activity and environmentally friendly properties, the as-prepared catalyst of Co3O4-CeO2-α-Fe2O3/SiO2 appeared to be more efficient for the SO2 conversion in a large concentration range.
[References]
  1. Mathieu Y, Soulard M, Patarin J, Moliere M, Fuel Process. Technol., 99, 35, 2012
  2. Tsimpidi AP, Karydis VA, Pandis SN, J. Air Waste Manage. Assoc., 57, 1489, 2007
  3. Garcia-Martinez J, Bueno-Lopez A, Garcia-Garcia A, Linares-Solano A, Fuel, 81(3), 305, 2002
  4. Pinero ER, Amoros DC, Lecea CSM, Solano AL, Carbon, 38, 335, 2000
  5. Garcia-Martinez J, Cazorla-Amoros D, Linares-Solano A, Appl. Catal. B: Environ., 47(3), 203, 2004
  6. Wang X, Kang Y, Cui D, Li J, Li D, Catal. Commun., 118, 39, 2019
  7. Dunn JP, Stenger HG, Wachs IE, Catal. Today, 53(4), 543, 1999
  8. Shi Y, Fan M, Ind. Eng. Chem. Res., 46, 80, 2009
  9. Liu YT, Yuan QB, Duan DH, Zhang ZL, Hao XG, Wei GQ, Liu SB, J. Power Sources, 243, 622, 2013
  10. Yang JS, Lin WH, Lin CY, Wang BS, Wu JJ, Acs Appl. Mater. Interfaces, 7, 13314, 2016
  11. Xu H, Ni K, Li X, Fang G, Fan G, Rsc Adv., 7, 51403, 2017
  12. Zhang QL, Wang HM, Ning P, Song ZX, Liu X, Duan YK, Appl. Surf. Sci., 419, 733, 2017
  13. Wang X, Zhang J, Wang Z, Wang Y, Vujanovic M, Li P, Tan H, J. Environ. Manage., 236, 420, 2019
  14. Wingen A, Anastasievic N, Hollnagel A, Werner D, Schuth F, J. Catal., 193(2), 248, 2000
  15. Xu SR, Shuai Q, Cheng JH, Wang XG, Adv. Mater. Res., 178, 65, 2011
  16. Fu H, Wang X, Wu H, Yin Y, Chen J, J. Phys. Chem. C, 111, 6077, 2007
  17. Dulamita N, Maicaneanu A, Sayle DC, Stanca M, Craciun R, Olea M, Afloroaei C, Fodor A, Appl. Catal. A: Gen., 287(1), 9, 2005
  18. Wang HL, Jin BF, Wang HB, Ma NN, Liu W, Weng D, Wu XD, Liu S, Appl. Catal. B: Environ., 237, 251, 2018
  19. Machida M, Kawada T, Fujii H, Hinokuma S, J. Phys. Chem. C, 119, 44, 2015
  20. Mazidi M, Behbahani RM, Fazeli A, Appl. Catal. B: Environ., 209, 190, 2017
  21. Thormahlen P, Skoglundh M, Fridell E, Andersson B, J. Catal., 188(2), 300, 1999
  22. Royer S, Duprez D, Chemcatchem, 3, 24, 2011
  23. Zhu X, Du Y, Wang H, Wei Y, Li K, Sun L, J. of Rare Earths, 32, 824 (2014).
  24. Das T, Deo G, J. Phys. Chem. C, 116, 20812, 2012
  25. Said EAA, El-Wahab MMMA, Soliman SA, Goda MN, Process Saf. Environ. Prot., 102, 370, 2016
  26. Dou J, Tang Y, Nie LH, Andolina CM, Zhang XY, House S, Li YT, Yang J, Tao FF, Catal. Today, 311, 48, 2018
  27. Lu SH, Fan W, Chen CC, Huang FL, Li KL, J. of Rare Earths, 35, 867 (2017).
  28. Fonseca J, Royer S, Bion N, Pirault-Roy L, Rangel MD, Duprez D, Epron F, Appl. Catal. B: Environ., 128, 10, 2012
  29. Chen L, Li J, Ge M, J. Phys. Chem. C, 113, 21177, 2009
  30. Hosseini SMS, Hashemipour H, Talebizadeh A, Iet Micro & Nano Letters, 11, 890 (2016).
  31. Wang X, Yi L, Zhang T, Luo Y, Lan Z, Kai Z, Zuo J, Jiang L, Wang R, Acs Catal., 7, 1626, 2017
  32. Yuan W, Peng Y, Dong L, Yu W, Deng L, Chen F, Microporous Mesoporous Mater., 206, 184, 2015
  33. Zhenzhong Z, Rare Metal Materials & Engineering, 41, 377 (2012).
  34. Zhu X, Xin T, Chen M, Yang Y, Zheng C, Zhou J, Xiang G, Catal. Commun., 92, 35, 2016
  35. Fang Y, Li YQ, Xie RJ, Hirosaki N, Takade T, Li XY, Qiu T, J. Solid State Chem., 184, 1405, 2011
  36. Qin JH, Long Y, Wu W, Zhang W, Gao ZK, Ma JT, J. Catal., 371, 161, 2019
  37. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Pure Appl. Chem., 87, 1051, 2015
  38. Lamastra FR, Mori S, Cherubini V, Scarselli M, Nanni F, Mater. Chem. Phys., 194, 253, 2017
  39. Liu B, Zhang XB, Shioyama H, Mukai T, Sakai T, Xu Q, J. Power Sources, 195(3), 857, 2010
  40. Finocchio E, Daturi M, Binet C, Lavalley JC, Blanchard G, Catal. Today, 52(1), 53, 1999
  41. Binitha NN, Suraja PV, Yaakob Z, Resmi MR, Silija PP, J. Sol-Gel Sci. Technol., 53, 466, 2010
  42. Suresh S, Karthikeyan S, Jayamoorthy K, J. Adv. Res., 7, 739, 2016
  43. He W, Wang J, Fan Y, Xu Z, Zhang J, Cao CN, Electrochem. Commun., 9, 275, 2007
  44. Zhang S, Rsc Adv., 4, 15835, 2014
  45. Lee S, Kang JS, Leung KT, Lee W, Kim D, Han S, Yoo W, Yoon HJ, Nam K, Sohn Y, J. Ind. Eng. Chem., 43, 69, 2016
  46. Rida K, Camara AL, Pena MA, Bolivar-Diaz CL, Martinez-Arias A, Int. J. Hydrog. Energy, 40(34), 11267, 2015
  47. Yoon DY, Lim E, Kim YJ, Kim JH, Ryu T, Lee S, Cho BK, Nam IS, Choung JW, Yoo S, J. Catal., 319, 182, 2014
  48. Grimaud A, Demortiere A, Saubanere M, Dachraoui W, Duchamp M, Doublet ML, Tarascon JM, Nat. Energy, 2, 16189, 2017
  49. Cheng XX, Zhang XY, Su DX, Wang ZQ, Chang JC, Ma CY, Appl. Catal. B: Environ., 239, 485, 2018