Issue
Korean Journal of Chemical Engineering,
Vol.37, No.4, 588-596, 2020
A sampling-based stochastic optimization for a boiler process in a pulp industry
Our Aim was to find the stochastic optimal solution for a boiler process in order to maximize steam generation while complying with pollutant emissions regulations. For a simulation base-model, support vector regression (SVR) is employed to present a general discrete-time dynamical system of a boiler, and a stochastic optimization was performed to take inherent process uncertainties into account. To generate a stochastic optimization problem, sample average approximation (SAA) based on Monte-Carlo sampling was introduced due to the properties of a SVR. Moreover, a gradient free-based particle swarm optimization (PSO) technique was applied to find the optimal parameters of SVR and investigate the stochastic optimal solution for the boiler process. The results show that the stochastic optimal solution provides almost 2% more steam generation under uncertainties: this indicates that the stochastic optimal solution provides more realistic results compared to the deterministic approach. The proposed methodology can be applied straightforwardly to black box models, or when the use of gradient-based optimization solvers is restricted.
[References]
  1. Rahat AAM, Wang C, Everson RM, Fieldsend JE, Appl. Energy, 29, 446, 2018
  2. Repo S, Verifying the pulp mill atmospheric emissions from the recovery boiler, Master’s thesis, LUT School of Energy Systems, Lappeenranta University of Technology, 88 (2018).
  3. Ghaffari S, Romagnoli JA, Comput. Aided Chem., 14, 1019, 2003
  4. Blasiak W, Tao L, Vaclavinek J, Lidegran P, Energy Conv. Manag., 38(10-13), 995, 1997
  5. Leiviska K, Simulation in pulp and paper industry, Control Engineering Laboratory, University of Oulu, Report A No 2, ISBN 951-42-4374-9, ISSN 1238-9390, 55 (1996).
  6. Perez Manuel Garcia, Vakkilainen Esa, Hyppanen Timo, Fuel, 185, 872, 2016
  7. Wallinder J, Lindgren K, Samuelsson A, Dynamic modelling of a Kraft pulp mill producing softwood and hardwood pulp in campaigns, Recycling and Sustainability (PEERS) Conference, 1-6 (2018).
  8. Maakala V, Jarvinen M, Vuorinen V, Energy, 160, 361, 2018
  9. Safdarnejad SM, Tuttle JF, Powell KM, Comput. Chem. Eng., 124, 62, 2019
  10. Pan H, Zhong W, Wang Z, Wang G, Comput. Chem. Eng., 70, 987, 2018
  11. Wang CL, Liu Y, Zheng S, Jiang AP, Energy, 153, 149, 2018
  12. Song JG, Romero CE, Yao Z, He BS, Fuel, 172, 20, 2016
  13. Zhou H, Zhao JP, Zheng LG, Wang CL, Cen KF, Appl. Artif. Intel., 25, 147, 2012
  14. Vapnik VN, The nature of statistical learning theory, Wiley, New York (1995).
  15. Vincent B, Duhamel C, Ren L, Tchernev N, IFAC-PapersOn-Line, 51, 1604, 2018
  16. Lee CJ, Prasad V, Lee JM, Ind. Eng. Chem. Res., 50(7), 3938, 2011
  17. Yang HJ, Hwang KS, Lee CJ, Ind. Eng. Chem. Res., 57(6), 2200, 2018
  18. Halemane KP, Grossmann IE, AIChE J., 29, 425, 1983
  19. Maranas CD, AIChE J., 43(5), 1250, 1997
  20. Tayal MC, Diwekar UM, AIChE J., 47(3), 609, 2001
  21. Shastri Y, Diwekar U, Comput. Chem. Eng., 30(5), 864, 2006
  22. Vakkilainen EK, Kraft recovery boilers: principles and practice, Valopaino Oy, Helsinki (2005).
  23. Gullichsen J, Fogelholm CJ, Papermaking science and technology: book 6B, Tappi Press, Atlanta (1999).
  24. Adams TN, Frederick WJ, Grace TM, Hupa M, Lisa K, Jones AJ, Tran H, Kraft Recovery Boilers, Tappi Press, Norcross (1997).
  25. Nandi S, Badhe Y, Lonari J, Sridevi U, Rao BS, Tambe SS, Kulkarni BD, Chem. Eng. J., 97(2-3), 115, 2004
  26. Chiang M, IEEE J. Sel. Areas Commun., 23, 104, 2005
  27. Kennedy J, Eberhart R, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, 1942 (1995).
  28. Chen WN, Zhang J, Lin Y, Chen N, Zhan ZH, Chung HS, Li Y, Shi YH, IEEE Trans. Evol. Comput., 17, 241, 2013
  29. Schwaab M, Biscaia EC, Monteiro JL, Pinto JC, Chem. Eng. Sci., 63(6), 1542, 2008
  30. Montgomery DC, Runger GC, Applied statistics and probability for engineers, 5th Ed., Wiley, New York (2010).