Issue
Korean Journal of Chemical Engineering,
Vol.37, No.4, 577-582, 2020
Experimental investigation of charge transfer coefficient and exchange current density in standard fuel cell model for polymer electrolyte membrane fuel cells
Two representative parameters, exchange current density (j0) and charge transfer coefficient (α), in a standard fuel cell model of polymer electrolyte membrane fuel cells (PEMFCs) were experimentally investigated. The polarization characteristics and the corresponding electrochemical impedance spectra of the normal PEMFCs were measured and Tafel curves were calculated from them, where j0 and α were finally calculated. As a result, the calculated j0 was 0.11- 0.70 A/cm2, while the α was 0.056-0.023, depending on the operating temperature. Here, the j0 is extremely overestimated while α is underestimated as compared with those in literature. Although the reason for such difference is not clear, it is expected that it could affect the predicted performance by the model significantly if the fuel cell performance is improved highly in the future so the activation overvoltage corresponding to identical current is lowered.
[References]
  1. Dicks A, Rand D, Fuel cell systems explained, Wiley, New York (2018).
  2. Winter M, Brodd RJ, Chem. Rev., 104(10), 4245, 2004
  3. Dyer CK, J. Power Sources, 106(1-2), 31, 2002
  4. Wee JH, Renew. Sust. Energ. Rev., 11(8), 1720, 2007
  5. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981, 2011
  6. van Biert L, Godjevac M, Visser K, Aravind PV, J. Power Sources, 327, 345, 2016
  7. Hoogers G, Fuel cell technology handbook, CRC Press, Florida (2003).
  8. Yazar S, Kurtulbas E, Ortaboy S, Atun G, Shin S, Korean J. Chem. Eng., 36(7), 1184, 2019
  9. Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33(11), 3121, 2016
  10. Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153, 2004
  11. Bernardi DM, Verbrugge MW, J. Electrochem. Soc., 139(9), 2477, 1992
  12. Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334, 1991
  13. O’Hayre R, Cha SW, Colella W, Prinz FB, Fuel cell fundamentals, Wiley, New York (2009).
  14. Nguyen PT, Berning T, Djilali N, J. Power Sources, 130(1-2), 149, 2004
  15. Springer TE, J. Electrochem. Soc., 138(8), 2334, 1991
  16. Bard AJ, Faulkner LR, Electrochemical methods: fundamentals and applications, Wiley, New York (2001).
  17. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR, J. Electroanal. Chem., 339(1-2), 101, 1992
  18. Litster S, McLean G, J. Power Sources, 130(1-2), 61, 2004
  19. Paganin VA, Ticianelli EA, Gonzalez ER, J. Appl. Electrochem., 26(3), 297, 1996
  20. Qi YT, Huang B, Chuang KT, J. Power Sources, 150, 32, 2005
  21. Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M, J. Power Sources, 86(1-2), 250, 2000
  22. Marr C, Li XG, J. Power Sources, 77(1), 17, 1999
  23. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR, J. Electrochem. Soc., 139(9), 2530, 1992
  24. Broka K, Ekdunge P, J. Appl. Electrochem., 27(3), 281, 1997
  25. Springer TE, Zowodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138(8), 2334, 1991
  26. Um S, Wang CY, Chen CS, J. Electrochem. Soc., 147(12), 4485, 2000
  27. Park T, Chang I, Jung JH, Lee HB, Ko SH, O'Hayre R, Yoo SJ, Cha SW, Energy, 134, 412, 2017