Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 571-575, 2020
Facile synthesis of mesoporous Cr2O3 microspheres by spray pyrolysis and their photocatalytic activity: Effects of surfactant and pyrolysis temperature
Mesoporous Cr2O3 microspheres with improved pore structure were prepared by spray pyrolysis method. A precursor solution was nebulized into fine droplets containing chromium salt and cetyltrimethylammonium bromide (CTAB), which were then pyrolyzed to Cr2O3/Cx microspheres inside a tubular furnace, followed by post-heat treatment to eliminate the carbonaceous material. The produced Cr2O3 particles had a diameter of 0.5-1 μm and their textural properties could be tuned by adjusting CTAB amount and pyrolysis temperature. The synthesized Cr2O3 microspheres had the highest surface area and pore volume of 52m2 g-1 and 0.3 cm3 g-1, respectively, which surpass those of Cr2O3 prepared using a conventional method such as thermal decomposition, hydrothermal reduction or wet chemical synthesis. The photocatalytic degradation of methyl orange dye (MO) was tested on the prepared Cr2O3 particles. It was determined that the spray pyrolysis-derived Cr2O3 exhibited greater photocatalytic activity than that of commercial TiO2 and Cr2O3 particles prepared by the thermal decomposition of chromium salt.
[References]
  1. Adepu AK, Goskula S, Chirra S, Siliveri S, Gujjula SR, Venkatathri N, J. Porous Mater., 26, 1259, 2019
  2. Ayyappan S, Ulagappan N, Rao CNR, J. Mater. Chem., 6, 1737, 1996
  3. Bai B, Wang PP, Wu L, Yang L, Chen ZH, Mater. Chem. Phys., 114(1), 26, 2009
  4. Bai YK, Zheng RT, Gu Q, Wang JJ, Wang BS, Cheng GA, Chen G, J. Mater. Chem. A., 2, 12770, 2014
  5. Chen L, Song Z, Wang X, Prikhodko SV, Hu J, Kodambaka S, Richards R, ACS Appl. Mater. Interfaces, 1, 1931, 2009
  6. Cho JS, Jung KY, Kang YC, Phys. Chem. Chem. Phys., 17, 1325, 2015
  7. Cho YH, Ko YN, Kang YC, Kim ID, Lee JH, Sens. Actuators B-Chem., 195, 189, 2014
  8. Choi JH, Yoo KS, Kim JS, Korean J. Chem. Eng., 35(12), 2480, 2018
  9. Dhas NA, Koltypin Y, Gedanken A, Chem. Mater., 9, 3159, 1997
  10. Gunnewiek RFK, Mendes CF, Kiminami RHGA, Mater. Lett., 129, 54, 2014
  11. Li L, Yan ZF, Lu GQ, Zhu ZH, J. Phys. Chem. B, 110(1), 178, 2006
  12. Lima MD, Bonadimann R, de Andrade MJ, Toniolo JC, Bergmann CP, J. European Ceram. Soc., 206, 1213, 2006
  13. Liu H, Du X, Xing X, Wang G, Qiao SZ, Chem. Commun., 48, 865, 2012
  14. Ma J, Ding J, Yu L, Li L, Kong Y, Komarneni S, Appl. Clay Sci., 107, 85, 2015
  15. Ocana M, J. European Ceram. Soc., 21, 931, 2001
  16. Park SW, Joo OS, Jung KD, Kim H, Han SH, Korean J. Chem. Eng., 17(6), 719, 2000
  17. Pei Z, Gao X, Zhang Y, Lu X, Mater. Lett., 116, 215, 2014
  18. Pei Z, Xu H, Zhang Y, J. Alloy. Compd., 468, L5, 2009
  19. Pei Z, Zheng X, Li Z, J. Nanosci. Nanotechnol., 16, 4655, 2016
  20. Pratap SR, Shyamsundar M, Shamshuddin SZM, J. Porous Mat., 25, 1265, 2018
  21. Rafi-ud D, Xuanhui Q, Ping L, Zhang L, Qi W, Iqbal MZ, Rafique MY, Farooq MH, Islam-ud D, J. Phys. Chem. C., 116, 11924, 2012
  22. Roy M, Ghosh S, Naskar MK, Mater. Chem. Phys., 159, 101, 2015
  23. Sone BT, Manikandan E, Gurib-Fakim A, Maaza M, Green. Chem. Lett. Rev., 9, 85, 2016
  24. Su J, Xue H, Gu M, Xia H, Pan F, Ceram. Int., 40, 15051, 2014
  25. Subhan F, Aslam S, Yan Z, Khan M, Etim UJ, Naeem M, J. Porous Mater., 26, 1465, 2019
  26. Tsai SC, Song YL, Tsai CS, Yang CC, Chiu WY, Lin HM, J. Mater. Sci., 39(11), 3647, 2004
  27. Valdes-Solis T, Fuertes AB, Mater. Res. Bull., 41(12), 2187, 2006
  28. Venugopal N, Kim WS, Sohn KY, Korean J. Chem. Eng., 36(9), 1536, 2019
  29. Vo TK, Kim WS, Kim SS, Yoo KS, Kim J, Energy Conv. Manag., 158, 92, 2018
  30. Vollath D, Szabo DV, Willis JO, Mater. Lett., 29, 271, 1996
  31. Yeom CJ, Kim YH, Korean J. Chem. Eng., 35(2), 587, 2018
  32. Zhang Y, Xu Y, Li T, Wang Y, Particuology, 10, 46, 2012