Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 556-562, 2020
Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire?
2,5-furandicarboxylic acid (FDCA), one of the key building block for replacing petroleum-derived terephthalic acid, is utilized as the source of bioplastics, pharmaceuticals. Herein, free-standing Cu(OH)2 and CuO nanowires as electrode were examined to disclose the effects of crystal structure and chemical formation based on copper oxide in electrocatalytic 5-Hydroxymethylfurfural (HMF) oxidation to FDCA in 0.1M KOH solution. We introduced on threedimensional copper foam (CuF) with high porosity as copper source and substrate with high conductivity free-standing Cu(OH)2 and CuO nanowires (NWs) on the substrate by inorganic polymerization and calcination for electrochemical HMF oxidation. This was enabled by square-planar coordination (δx2-y2) of Cu2+ ions in (001) crystal faces of Cu(OH)2 crystal. As a result of stacking with hydrogen bonds, free-standing Cu(OH)2 NWs on the substrate was formed. There was no change in the morphology of the nanowire arrays, but the active sites from a plane area per surface- exposed Cu atoms by transformation of Cu(OH)2 to CuO NWs increased.
[References]
  1. Bozell JJ, Petersen GR, Green Chem., 12, 539, 2010
  2. Eerhart AJJE, Faaij APC, Patel MK, Energy Environ. Sci., 5, 6407, 2012
  3. Corma A, Iborra S, Velty A, Chem. Rev., 107(6), 2411, 2007
  4. Agarwal B, Kailasam K, Sangwan RS, Elumalai S, Renew. Sust. Energ. Rev., 82, 2408, 2018
  5. Zhang Z, Deng K, ACS Catal., 5, 6529, 2015
  6. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ, Catal. Today, 160(1), 55, 2011
  7. Liu XX, Xiao JF, Ding H, Zhong WZ, Xu Q, Su SP, Yin DL, Chem. Eng. J., 283, 1315, 2016
  8. Li N, Tang S, Meng X, J. Mater. Sci. Technol., 31, 30, 2015
  9. Ait Rass H, Essayem N, Besson M, ChemSusChem, 8, 1206, 2015
  10. Cha HG, Choi KS, Nat. Chem., 7, 328, 2015
  11. Ozcan L, Yalcin P, Alagoz O, Yurdakal S, Catal. Today, 281, 205, 2017
  12. Jiang N, You B, Boonstra R, Rodriguez IMT, Sun Y, ACS Energy Lett., 1, 386, 2016
  13. Tong X, Yu L, Chen H, Zhuang X, Liao S, Cui H, Catal. Commun., 90, 91, 2017
  14. Huang YB, Chen MY, Yan L, Guo QX, Fu Y, ChemSusChem, 7, 1068, 2014
  15. Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG, Appl. Catal. B: Environ., 242, 85, 2019
  16. Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q, Nanoscale Res. Lett., 14, 78, 2019
  17. Zhan F, Wang R, Yin J, Han Z, Zhang L, Jiao T, Zhou J, Zhang L, Peng Q, RSC Adv., 9, 878, 2019
  18. Wen XG, Zhang WX, Yang SH, Langmuir, 19(14), 5898, 2003
  19. Hsieh CT, Chen JM, Lin HH, Shih HC, Appl. Phys. Lett., 82, 3316, 2003
  20. Li Z, Chen Y, Xin Y, Zhang Z, Sci. Rep., 5, 16115, 2015
  21. Zhang WX, Wen XG, Yang SH, Inorg. Chem., 42(16), 5005, 2003
  22. Kim C, Cho KM, Al-Saggaf A, Gereige I, Jung HT, ACS Catal., 8, 4170, 2018
  23. Ming H, Pan KM, Liu Y, Li HT, He XD, Ming J, Ma Z, Kang ZH, J. Cryst. Growth, 327(1), 251, 2011
  24. Wang P, Qi C, Hao L, Wen P, Xu X, J. Mater. Sci. Technol., 35, 285, 2019
  25. Meng L, Tian W, Wu F, Cao F, Li L, J. Mater. Sci. Technol., 35, 1740, 2019
  26. Huang J, Li H, Zhu Y, Cheng Q, Yang X, Li C, J. Mater. Chem. A, 3, 8734, 2015
  27. Kang MJ, Kang YS, J. Mater. Chem. A, 3, 15723, 2015
  28. Hou CC, Fu WF, Chen Y, ChemSusChem, 9, 2069, 2016
  29. Casella IG, Gatta M, J. Electroanal. Chem., 494(1), 12, 2000
  30. Yu J, Ran J, Energy Environ. Sci., 4, 1364, 2011
  31. Leng WH, Zhang Z, Zhang JQ, Cao CN, J. Phys. Chem. B, 109(31), 15008, 2005
  32. Casanova O, Iborra S, Corma A, ChemSusChem, 2, 1138, 2009