Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 546-555, 2020
Electroless deposition of Ni nanoparticles on micron-sized boron carbide particles: Physicochemical and oxidation properties
The present work describes the electroless deposition of Ni nanoparticles on micron sized (10 μm) boron carbide particles at room temperature. The weight of the boron carbide particles varied in relation to the other parameters during electroless deposition. A uniform and continuous nanolayer of Ni nanoparticles changed into a discontinuous layer, with irregular distribution and insignificant presence of Ni nanoparticles, as the weight of the boron carbide increased. The EDS measurement, elemental mapping and line scanning profile results showed a decrease in Ni percentage, as the weight of boron carbide increased in the samples. Further, FIB cross-sectional SEM images demonstrated a core-shell like structure of Ni coated boron carbide particle, when the weight of boron carbide was low in the sample. XRD showed the nanocrystalline nature of Ni-particles, and the presence of Ni, B and C elements was confirmed by XPS analysis. When thermogravimetric analysis was conducted in air atmosphere, the boron carbide, Ni nanoparticles and Ni-coated boron carbide samples exhibited oxidation at high temperature accompanied by weight gain. After being coated with Ni nanoparticles, even a small amount of Ni, the oxidation temperature of the boron carbide shifted to a lower temperature, with enhanced exothermic reaction as well as higher weight gain.
[References]
  1. Dong HY, Zhu XJ, Lu K, J. Mater. Sci., 43(12), 4247, 2008
  2. Belon R, Antou G, Praseilles N, Maitre A, Gosset D, Ceram. Int., 43, 6631, 2017
  3. Dawes M, Blackburn S, Greenwood R, Charles S, Ceram. Int., 44, 23208, 2018
  4. Thevenot F, J. Eur. Ceram. Soc., 6, 205, 1990
  5. Hou X, Chou KC, J. Alloy. Compd., 573, 182, 2013
  6. Li YQ, Qiu T, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 444, 184, 2007
  7. Di Giampaolo AR, Ordofiez JG, Gugliemacci JM, Lira J, Surf. Coat. Technol., 89, 127, 1997
  8. Ebrahimian-Hosseinabadi M, Azari-Dorcheh K, Moonir Vaghefi SM, Wear, 260, 123, 2006
  9. Zhu H, Niu Y, Lin C, Huang L, Ji H, Zheng X, Ceram. Int., 39, 101, 2013
  10. Sudagar J, Lian J, Sha W, J. Alloy. Compd., 571, 183, 2013
  11. He P, Huang S, Wang H, Huang Z, Hu J, Cheng X, Pan C, Ceram. Int., 40, 16653, 2014
  12. Pang JN, Jiangn SW, Lin H, Wang ZQ, Ceram. Int., 42, 4491, 2016
  13. Kilicarslan A, Toptan F, Kerti I, Mater. Lett., 76, 11, 2012
  14. Zhu X, Dong H, Lu K, Surf. Coat. Technol., 202, 2927, 2008
  15. Aizenshtein M, Froumin N, Frage N, Engineering, 6, 849, 2014
  16. Lin Q, Sui R, J. Alloy. Compd., 577, 37, 2013
  17. Lin Q, Sui R, J. Alloy. Compd., 649, 505, 2015
  18. Lin Q, Sui R, J. Alloy. Compd., 556, 274, 2013
  19. Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JL, Carbon, 38, 363, 2000
  20. Li Q, Fan S, Han W, Sun C, Liang W, Jpn. J. Appl. Phy., 36, L501, 1997
  21. Uysal M, Karslioglu R, Alp A, Akbulut H, Appl. Surf. Sci., 257(24), 10601, 2011
  22. Zou GZ, Cao MS, Zhang L, Li JG, Xu H, Chen YJ, Surf. Coat. Technol., 201, 108, 2006
  23. Kong FZ, Zhang XB, Xiong WQ, Liu F, Huang WZ, Sun YL, Tu JP, Chen XW, Surf. Coat. Technol., 155, 33, 2002
  24. Shin WG, Calder S, Ugurlu O, Girshick SL, J. Nanopart. Res., 13, 7187, 2011
  25. Jung HJ, Sohn Y, Sung HG, Hyun HS, Shin WG, Powder Technol., 269, 548, 2015
  26. Bute A, Jagannath, Kar R, Chopade SS, Desai SS, Deo MN, Rao P, Chand N, Kumar S, Singh K, Patil DS, Sinha S, Mater. Chem. Phys., 182, 62, 2016
  27. Payne BP, Biesinger MC, McIntyre NS, J. Electr. Spectr. Rel. Phenomena, 175, 55, 2009
  28. Richardson Y, Blin J, Volle G, Motuzas J, Julbe A, Appl. Catal. A: Gen., 382(2), 220, 2010
  29. Prieto P, Nistor V, Nouneh K, Oyama M, Abd-Lefdil M, Diaz R, Appl. Surf. Sci., 258(22), 8807, 2012
  30. Jacobsohn LG, Schulze RK, Maia da Costa MEH, Nastasi M, Surf. Sci., 572, 418, 2004
  31. Chen R, Su L, Qi J, Shi Q, Shi Y, Liao Z, Lu T, Ceram. Int., 44, 17298, 2018
  32. Sung J, Shin M, Deshmukh PR, Hyun HS, Sohn Y, Shin WG, J. Alloy. Compd., 767, 924, 2018
  33. Lee S, Noh K, Lim J, Yoon W, Chin. J. Mech. Eng., 29, 1244, 2016
  34. Yang YF, Wang HY, Zhao RY, Liang YH, Jiang QC, Int. J. Refract. Met. Hard Mater., 26, 77, 2008
  35. Rohani P, Kim S, Swihart MT, Adv. Eng. Mater., 6, 150255, 2016
  36. Kim DW, Kwon GH, Kim KT, J. Korean Powder Metall. Inst., 24, 242, 2017
  37. Mckee DW, Carbon, 8, 623, 1970
  38. Liu T, Chen X, Xu H, Han A, Ye M, Pan G, Propellants Explos. Pyrotech., 40, 873, 2015
  39. Liu T, Chen X, Han AJ, Ye MQ, Zhang ST, KnE Materials Science, 2016, 95, 2016
  40. Xi J, Liu J, Wang Y, Hu Y, Zhang Y, Zhou J, J. Propulsion Power, 30, 47, 2014
  41. Levashov EA, Mukasyan AS, Rogachev AS, Shtansky DV, Int. Mater. Rev., 62, 203, 2017
  42. Yang YF, Wang HY, Liang YH, Zhao RY, Jiang QC, J. Mater. Res., 22, 169, 2007