Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 536-545, 2020
Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2
2-chloro-4,6-dinitroresorcinol (CDNR) is detrimental to the environment and human health owing to its high toxicity and poor biodegradability. To demonstrate the feasibility of photocatalytic degradation of CDNR from industrial salty wastewater by borosilicate glass supported TiO2 under UV light irradiation, borosilicate glass supported TiO2 was prepared successfully by a novel sol-gel route via dip-coating method and characterized by XRD, SEM, FTIR and XPS analysis. The results showed that TiO2 catalyst has the anatase phase structure with crystallite size of 11.5 nm and coats uniformly on the borosilicate glass. Also, the effects of reaction time, pH value, TiO2 dosage, CDNR concentration, and Cl- on the degradation efficiency of CDNR were investigated. The results indicated that at pH 2, reaction time 3.5 h, CDNR concentration 10mg/L, NaCl concentration 5.85% (w/w) and TiO2 dosage 1.0 g/L, 97.7% of CDNR was degraded in the presence of Cl-, this corresponded to a rate constant of 1.05 h-1, illustrating the feasibility of photocatalytic degradation process. This contribution provides a basic investigation regarding the potential application of borosilicate glass supported TiO2.
[References]
  1. Shi R, Huang Y, J. Harbin Inst. Technol. New Ser., 15, 518, 2008
  2. Wang B, Zhang Y, Jiang W, Li J, Luo Q, New Chem. Mat., 41, 117, 2013
  3. Li X, Qin F, Dai Q, Shao S, Wang X, Res. Chem. Intermed., 44, 6087, 2018
  4. Hu J, Huang Y, Jin N, Synth. Technol. Appl., 18, 18, 2003
  5. Cai G, Li D, Fang D, Yu W, Polym. Test., 40, 143, 2014
  6. Wei XN, Wang HL, Li ZD, Huang ZQ, Qi HP, Jiang WF, Appl. Surf. Sci., 372, 108, 2016
  7. Mich M, US Patent, 5,001,279 (1991).
  8. Zhang Y, Jiang W, Yang Q, China Ceram., 50, 34, 2014
  9. Chaker H, Cherif-Aouali L, Khaoulani S, Bengueddach A, Fourmentin S, J. Photochem. Photobiol. A-Chem., 318, 142, 2016
  10. Nakata K, Fujishima A, J. Photochem. Photobiol. C., 13, 169, 2012
  11. Tang Y, Luo S, Teng Y, Liu C, Xu X, Zhang X, Chen L, J. Hazard. Mater., 241-242, 323, 2012
  12. Wang XJ, Wu Z, Wang Y, Wang W, Wang X, Bu YJ, Zhao JF, J. Hazard. Mater., 262, 16, 2013
  13. Patsios SI, Sarasidis VC, Karabelas AJ, Sep. Purif. Technol., 104, 333, 2013
  14. Sun J, Yan X, Lv KL, Sun S, Deng KJ, Du DY, J. Mol. Catal. A-Chem., 367, 31, 2013
  15. Lu ZL, Chen F, He M, Song MS, Ma ZF, Shi WD, Yan YS, Lan JZ, Li F, Xiao P, Chem. Eng. J., 249, 15, 2014
  16. Lu Z, Huo P, Luo Y, Liu X, Wu D, Gao X, Li C, Yan Y, J. Mol. Catal. A-Chem., 378, 81, 2013
  17. Mohammadi Z, Sharifnia S, Shavisi Y, Mater. Chem. Phys., 184, 110, 2016
  18. Fernandez A, Lassaletta G, Jimenez VM, Justo A, Gonzalezelipe AR, Herrmann JM, Tahiri H, Aitichou Y, Appl. Catal. B: Environ., 7(1-2), 49, 1995
  19. Espino-Estevez MR, Fernandez-Rodriguez C, Gonzalez-Diaz OM, Navio JA, Fernandez-Hevia D, Dona-Rodriguez JM, Chem. Eng. J., 279, 488, 2015
  20. Tryba B, J. Hazard. Mater., 151, 62, 2008
  21. Shet A, Shetty KV, Environ. Sci. Pollut. Res., 23, 20055, 2016
  22. Thomas J, Radhika S, Yoon M, J. Mol. Catal. A-Chem., 411, 146, 2016
  23. Tolosana-Moranchel A, Ovejero D, Barco B, Bahamonde A, Diaz E, Faraldos M, J. Environ. Chem. Eng., 7, 103051, 2019
  24. Wang HL, Liang WZ, Jiang WF, Mater. Chem. Phys., 130(3), 1372, 2011
  25. Wei XN, Wang HL, Wang XK, Jiang WF, Appl. Surf. Sci., 426, 1271, 2017
  26. Ichinose H, Terasaki M, Katsuki H, J. Sol-Gel Sci. Technol., 22, 33, 2001
  27. Ludwichk R, Helferich OK, Kist CP, Lopes AC, Cavasotto T, Silva DC, Barreto-Rodrigues M, J. Hazard. Mater., 293, 81, 2015
  28. Ge L, Xu M, Fang H, J. Sol-Gel Sci. Technol., 38, 47, 2006
  29. Wu J, Chen C, J. Photochem. Photobiol. A-Chem., 163, 509, 2004
  30. Khan H, Khalil AK, Khan A, Saeed K, Ali N, Korean J. Chem. Eng., 33(10), 2802, 2016
  31. Tasbihi M, Calin I, Suligoj A, Fanetti M, Stangar UL, J. Photochem. Photobiol. A-Chem., 336, 89, 2017
  32. Sun S, Zhao R, Xie Y, Liu Y, Food Control, 100, 183, 2019
  33. Kim JR, Kan E, J. Eviron. Manage., 180, 94, 2016
  34. Zhou S, Liu Y, Li J, Wang Y, Jiang G, Zhao Z, Wang D, Duan A, Liu J, Wei Y, Appl. Catal. B: Environ., 158-159, 20, 2014
  35. An G, Ma W, Sun Z, Liu Z, Han B, Miao S, Miao Z, Ding K, Carbon, 45, 1795, 2007
  36. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY, Appl. Catal. B: Environ., 187, 47, 2016
  37. Kuo HP, Yao SW, Huang AN, Hsu WY, Korean J. Chem. Eng., 34(1), 73, 2017
  38. Elsellami L, Hafidhi N, Dappozze F, Houas A, Guillard C, Chinese J. Catal., 36, 1818, 2015
  39. Xiao G, Su HJ, Tan TW, J. Hazard. Mater., 283, 888, 2015
  40. Liu B, Chen B, Zhang BY, Jing L, Zhang H, Lee K, J. Environ. Eng.-Asce., 142, 040160, 2016
  41. Ziegmann M, Doll T, Frimmel FH, Acta Hydroch. Hydrob., 34, 146, 2006
  42. Grebel JE, Pignatello JJ, Mitch WA, Environ. Sci. Technol., 44, 6822, 2010
  43. Kanakaraju D, Motti CA, Glass BD, Oelgemoller M, Chemosphere, 139, 579, 2015
  44. Kong X, Jiang J, Ma J, Yang Y, Liu W, Liu Y, Water Res., 90, 15, 2016
  45. Li GY, An TC, Chen JX, Sheng GY, Fu JM, Chen FZ, Zhang SQ, Zhao HJ, J. Hazard. Mater., 138(2), 392, 2006
  46. Huang L, Li L, Dong W, Liu Y, Hou H, Environ. Sci. Technol., 42, 8070, 2008
  47. Zhang W, Li Y, Su Y, Mao K, Wang Q, J. Hazard. Mater., 215-216, 252, 2012
  48. Fang J, Fu Y, Shang C, Environ. Sci. Technol., 48, 1859, 2014
  49. Wu Y, Bianco A, Brigante M, Dong W, Sainte-Claire P, Hanna K, Mailhot G, Environ. Sci. Technol., 49, 14343, 2015
  50. Balcha A, Yadav OP, Dey T, Environ. Sci. Pollut. Res., 23, 25485, 2016