Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 525-535, 2020
Nitrogen removal and nitrogenous intermediate production of the heterotrophic membrane-aerated biofilm: A mathematical modeling investigation
A one-dimensional biofilm model was applied to illustrate the nitrogen conversion and removal within the heterogeneous biofilm attached on the gas-permeable membrane with different oxygen transfer coefficients: 7.5m/d, 1.5m/d and 0.3m/d. Integrating the ammonia-oxidizing bacteria-mediating hydroxylamine oxidization pathway during the autotrophic nitrification and the four-step denitrification pathway during the heterotrophic denitrification, the effects of the intra-membrane aeration pressure and the influent COD/N ratio were further quantitatively evaluated on the systematic performance of nitrogen conversion. Dynamic profiles of key nitrogenous intermediates were investigated to further analyze the treatment efficacy of the targeted biofilm system. It is inapplicable for membrane with oxygen transfer coefficient of 0.3m/d to sustain the biofilm due to the inferior treatment performance under higher influent organics and distinct nitrous oxide (N2O) production with elevated aeration pressures under lower influent organics. For the oxygen transfer coefficients of 7.5m/d and 1.5m/d, N2O production was detectable for the insufficient carbon source, indicating the significance of hydroxylamine oxidization. Short-cut nitrogen removal pathway could be feasible within the latter biofilm due to the nitrite accumulation, further reduced by supplementing the carbon source. Heterotrophic denitrification would contribute to the N2O production. Maintaining the biofilm thickness was conducive to short-cut nitrogen removal by regulating the substrate transfer and the biomass distribution along the biofilm. Besides the total nitrogen removal efficiency, the nitrite accumulation and N2O production were both decreased with the thickening biofilm. Inside the thinner biofilm, a short-cut pathway via nitrite might be the major pathway for nitrogen removal with distinguished N2O production, which could be mitigated through supplementing the carbon source.
[References]
  1. Nerenberg R, Curr. Opin. Biotechnol., 38, 131, 2016
  2. Li M, Du CY, Liu J, Quan X, Lan MC, Li BA, Chem. Eng. J., 338, 680, 2018
  3. Kampschreur MJ, Tan NCG, Kleerebezem R, Picioreanu C, Jetten MSM, van Loosdrecht MCM, Environ. Sci. Technol., 42, 429, 2007
  4. Kampschreur MJ, Picioreanu C, Tan NCG, Kleerebezem R, Jetten MSM, van Loosdrecht MCM, Water Environ. Res., 79, 2499, 2007
  5. IPCC, Climate change 2001: the scientific basis, Cambridge University Press, Cambridge (2001).
  6. Zumft WG, Am. Soc. Microbiol., 61, 533, 1997
  7. Kampschreur MJ, van der Star WRL, Wielders HA, Mulder JW, Jetten MSM, van Loosdrecht MCM, Water Res., 42, 812, 2008
  8. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM, Water Res., 43, 4093, 2009
  9. Peng L, Ni BJ, Ye L, Yuan ZG, Chem. Eng. J., 281, 661, 2015
  10. Hooper AB, Vannelli T, Bergmann DJ, Arciero DM, Antonie van Leeuwenhoek, 71, 59, 1997
  11. Colliver BB, Stephenson T, Biotechnol. Adv., 18, 219, 2000
  12. Ni BJ, Peng L, Law Y, Guo J. Yuan Z, Environ. Sci. Technol., 48, 3916, 2014
  13. Yu R, Kampschreur MJ, van Loosdrecht MCM, Chandran K, Environ. Sci. Technol., 44, 1313, 2010
  14. Kim SW, Miyahara M, Fushinobu S, Wakagi T, Shoun H, Bioresour. Technol., 101(11), 3958, 2010
  15. Ni BJ, Ruscalleda M, Pellicer-Nacher C, Smets BF, Environ. Sci. Technol., 45, 7768, 2011
  16. Poth M, Focht DD, Appl. Environ. Microbiol., 49, 1134, 1985
  17. Wrage N, Velthof GL, van Beusichem ML, Oenema O, Soil Biol. Biochem., 33, 1723, 2001
  18. Poughon L, Dussap CG, Gros JB, Biotechnol. Bioeng., 72, 416, 2000
  19. Ni BJ, Yuan Z, Water Res., 87, 336, 2015
  20. Hiatt WC, Grady CPL, Water Environ. Res., 80, 2145, 2008
  21. Butler MD, Wang YY, Cartmell E, Stephenson T, Water Res., 43, 1265, 2009
  22. Yang Q, Liu X, Peng C, Wang S, Sun H, Peng Y, Environ. Sci. Technol., 43, 9400, 2009
  23. Foley J, de Haas D, Yuan Z, Lant P, Water Res., 44, 831, 2010
  24. Schreiber F, Loeffler B, Polerecky L, Kuypers MMM, de Beer D, ISME J., 3, 1301, 2009
  25. Kampschreur MJ, Poldermans R, Kleerebezem R, van der Star WR, Haarhuis R, Abma WR, Jetten MSM, van Loosdrecht MCM, Water Sci. Technol., 60, 3211, 2009
  26. Pan Y, Ni BJ, Lu H, Chandran K, Richardson D, Yuan Z, Water Res., 71, 21, 2015
  27. Peng L, Sun J, Liu Y, Dai X, Ni BJ, Sci. Rep., 6, 28880, 2016
  28. Ni BJ, Yuan ZG, Chandran K, Vanrolleghem PA, Murthy S, Biotechnol. Bioeng., 110(1), 153, 2013
  29. Sabba F, Picioreanu C, Perez J, Nerenberg R, Environ. Sci. Technol., 49, 1486, 2015
  30. Ni BJ, Yuan ZG, J. Membr. Sci., 428, 163, 2013
  31. Wang R, Terada A, Lackner S, Smets BF, Henze M, Xia S, Zhao J, Water Res., 43, 2699, 2009
  32. Mampaey KE, Beuckels B, Kampschreur MJ, Kleerebezem R, van Loosdrecht MCM, Volcke EIP, Environ. Technol., 34, 1555, 2013
  33. Ni BJ, Ye L, Law Y, Byers C, Yuan Z, Environ. Sci. Technol., 47, 7795, 2013
  34. Reichert P, Computer program for the identification and simulation of aquatic systems, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dubendorf, Switzerland (1998).
  35. Debus O, Wanner O, Wat. Sci. Technol., 26, 607, 1992
  36. Liu Y, Peng L, Ngo HH, Guo W, Wang D, Pan Y, Sun J, Ni BJ, Environ. Sci. Technol., 50, 9407, 2016
  37. Peng L, Liu YW, Ni BJ, Chem. Eng. J., 287, 217, 2016