Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 513-524, 2020
CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study
UiO-66 and Cu3(BTC)2, two well-known metal organic frameworks (MOFs), were aminated through insitu modification approach to improve CO2/N2 separation. UiO-66 was synthesized by solvothermal method, while Cu3(BTC)2 was synthesized with two electrochemical and solvothermal approaches for the sake of comparison. NH2- UiO-66 structure was optimized by evaluating the effect of key parameters, such as synthesis temperature, ligand to metal salt molar ratio, and modulator to metal salt molar ratio, on CO2/N2 selectivity. The effect of different weight percentage of 2-aminoterephthalic acid (NH2-BDC) on electrochemical synthesis of NH2-Cu3(BTC)2 was also investigated. Products were characterized by FTIR, BET, FESEM, XRD, and TGA analyses. Single CO2 adsorption experiment for NH2-UiO-66 showed higher capacity compared to UiO-66. However, for NH2-Cu3(BTC)2, an opposite trend was observed. The CO2 adsorption capacity for NH2-UiO-66 and NH2-Cu3(BTC)2 at 1 bar and 25 oC was 3.32 and 3.86 mmol/g, respectively. CO2/N2 selectivity with fixed concentration ratio (15/85 vol%) was also studied for aminated samples, and the values of 120 and 53 were determined for NH2-UiO-66 and NH2-Cu3(BTC)2, respectively. NH2-Cu3(BTC)2 showed the highest isosteric heat of adsorption among all samples (43 kJ/mol).
[References]
  1. Sabouni R, Kazemian H, Rohani S, Microporous Mesoporous Mater., 175, 85, 2013
  2. Sayari A, Belmabkhout Y, Serna-Guerrero R, Chem. Eng. J., 171(3), 760, 2011
  3. Sabouni R, Kazemian H, Rohani S, Environ. Sci. Technol., 47, 9372, 2013
  4. Choi S, Drese JH, Jones CW, ChemSusChem: Chem. Sustainability Energy Mater., 2, 796 (2009).
  5. Wang L, Liu Z, Li P, Yu JG, Rodrigues AE, Chem. Eng. J., 197, 151, 2012
  6. Dantas TLP, Luna FMT, Silva IJ, Torres AEB, de Azevedo DCS, Rodrigues AE, Moreira RFPM, Chem. Eng. J., 172(2-3), 698, 2011
  7. Ding M, Flaig RW, Jiang HL, Yaghi OM, Chem. Soc. Rev., 48, 2783, 2019
  8. Hu Z, Wang Y, Shah BB, Zhao D, Adv. Sustainable Syst., 3, 197000, 2019
  9. Molavi H, Eskandari A, Shojaei A, Mousavi SA, Microporous Mesoporous Mater., 257, 193, 2018
  10. Pang ZF, Zhou TY, Liang RR, Qi QY, Zhao X, Chem. Sci., 8, 3866, 2017
  11. Zhou W, Wu H, Yildirim T, J. Am. Chem. Soc., 130(46), 15268, 2008
  12. Khattak AM, Ghazi ZA, Liang B, Khan NA, Iqbal A, Li L, Tang Z, J. Mater. Chem. A, 4, 16312, 2016
  13. Huxford RC, Della Rocca J, Lin W, Curr. Opin. Chem. Biol., 14, 262, 2010
  14. Fang QR, Wang JH, Gu S, Kaspar RB, Zhuang ZB, Zheng J, Guo HX, Qiu SL, Yan YS, J. Am. Chem. Soc., 137(26), 8352, 2015
  15. Chen H, Liu Y, Cai T, Dong W, Tang L, Xia X, Wang L, Li T, ACS Appl. Mater. Interfaces, 11, 28791, 2019
  16. Lin S, Diercks CS, Zhang YB, Kornienko N, Nichols EM, Zhao YB, Paris AR, Kim D, Yang P, Yaghi OM, Chang CJ, Science, 349(6253), 1208, 2015
  17. Dalapati S, Jin SB, Gao J, Xu YH, Nagai A, Jiang DL, J. Am. Chem. Soc., 135(46), 17310, 2013
  18. Assfour B, Seifert G, Microporous Mesoporous Mater., 133, 59, 2010
  19. Wang H, Jiang D, Huang D, Zeng G, Xu P, Lai C, Chen M, Cheng M, Zhang C, Wang Z, J. Mater. Chem. A, 7, 22848, 2019
  20. Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Chem. Soc. Rev., 48, 488, 2019
  21. Xian SK, Wu Y, Wu JL, Wang X, Xiao J, Ind. Eng. Chem. Res., 54(44), 11151, 2015
  22. Rada ZH, Abid HR, Shang J, He YD, Webley P, Liu SM, Sun HQ, Wang SB, Fuel, 160, 318, 2015
  23. Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M, Appl. Energy, 161, 225, 2016
  24. Kim M, Cohen SM, CrystEngComm, 14, 4096, 2012
  25. DeCoste JB, Peterson GW, Schindler BJ, Killops KL, Browe MA, Mahle JJ, J. Mater. Chem. A, 1, 11922, 2013
  26. Azhar MR, Abid HR, Periasamy V, Sun HQ, Tade MO, Wang SB, J. Colloid Interface Sci., 500, 88, 2017
  27. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP, Chem. Mater., 22, 6632, 2010
  28. Yang Y, Shukla P, Wang S, Rudolph V, Chen XM, Zhu Z, Rsc Adv., 3, 17065, 2013
  29. Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, Kapteijn F, Gascon J, Chem. Soc. Rev., 44, 2421, 2015
  30. Nik OG, Chen XY, Kaliaguine S, J. Membr. Sci., 413, 48, 2012
  31. Wu FC, Lin L, Liu HO, Wang HT, Qiu JS, Zhang XF, J. Membr. Sci., 544, 342, 2017
  32. Esfandiari K, Ghoreyshi AA, Jahanshahi M, Ind. Eng. Chem. Res., 56(49), 14610, 2017
  33. Pirzadeh K, Ghoreyshi AA, Rahimnejad M, Mohammadi M, Korean J. Chem. Eng., 35(4), 974, 2018
  34. Huang AS, Wan LL, Caro J, Mater. Res. Bull., 98, 308, 2018
  35. Shan B, James JB, Armstrong MR, Close EC, Letham PA, Nikkhah K, Lin Y, Mu B, J. Phys. Chem. C, 122, 2200, 2018
  36. Chavan SM, Shearer GC, Svelle S, Olsbye U, Bonino F, Ethiraj J, Lillerud KP, Bordiga S, Inorg. Chem., 53(18), 9509, 2014
  37. Hu Z, Castano I, Wang S, Wang Y, Peng Y, Qian Y, Chi C, Wang X, Zhao D, Cryst. Growth Des., 16, 2295, 2016
  38. Shearer GC, Chavan S, Ethiraj J, Vitillo JG, Svelle S, Olsbye U, Lamberti C, Bordiga S, Lillerud KP, Chem. Mater, 26, 4068, 2014
  39. Jia MM, Feng Y, Liu SC, Qiu JH, Yao JF, J. Membr. Sci., 539, 172, 2017
  40. Ploskonka AM, DeCoste JB, ACS Appl. Mater. Interfaces, 9, 21579, 2017
  41. Peterson GW, DeCoste JB, Fatollahi-Fard F, Britt DK, Ind. Eng. Chem. Res., 53(2), 701, 2014
  42. Ge B, Xu Y, Zhao H, Sun H, Guo Y, Wang W, Materials, 11, 1421, 2018
  43. Marx S, Kleist W, Baiker A, J. Catal., 281(1), 76, 2011
  44. Martinez F, Sanz R, Orcajo G, Briones D, Yanguez V, Chem. Eng. Sci., 142, 55, 2016
  45. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  46. Danckwerts P, Chem. Eng. Sci., 34, 443, 1979
  47. Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJM, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F, Langmuir, 27(7), 3970, 2011
  48. Abid HR, Shang J, Ang HM, Wang S, Int. J. Smart Nano Mater., 4, 72, 2013
  49. Vahidi M, Rashidi AM, Tavasoli A, J. Iranian Chem. Soc., 14, 2247, 2017
  50. Cmarik GE, Kim M, Cohen SM, Walton KS, Langmuir, 28, 15606, 2012
  51. Rada ZH, Abid HR, Sun HQ, Wang SB, J. Chem. Eng. Data, 60(7), 2152, 2015
  52. Mei L, Jiang T, Zhou X, Li YW, Wang HH, Li Z, Chem. Eng. J., 321, 600, 2017
  53. Maramis V, Kurniawan A, Ayucitra A, Sunarso J, Ismadji S, Front. Chem. Sci. Eng., 6, 58, 2012
  54. Guo Q, Thermosets: structure, properties, and applications, Woodhead Publishing Limited, 65 (2012).
  55. Armstrong MR, Shan BH, Cheng ZF, Wang DK, Liu JC, Mu B, Chem. Eng. Sci., 167, 10, 2017
  56. Cao Y, Zhang H, Song F, Huang T, Ji J, Zhong Q, Chu W, Xu Q, Materials, 11, 589, 2018
  57. Yang Y, Lin R, Ge L, Hou L, Bernhardt P, Rufford TE, Wang S, Rudolph V, Wang Y, Zhu Z, Dalton Transact., 44, 8190, 2015
  58. Yuan B, Ma D, Wang X, Li Z, Li Y, Liu H, He D, Chem. Commun., 48, 1135, 2012
  59. Arstad B, Fjellvag H, Kongshaug KO, Swang O, Blom R, Adsorption, 14, 755, 2008