Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 505-512, 2020
Carbon capture by alkaline absorbent using octadecyltrichlorosilane modified PVDF/TiO2 membrane
Carbon capture efficiency of membrane gas absorption was improved using a nearly superhydrophobic membrane. This membrane, polyvinylidene fluoride (PVDF) membrane, was blended with TiO2 nanoparticles and post-modified with octadecyltrichloro silane to reduce wetting. Wetting reduction is important to minimize mass transfer resistance in membrane pores during carbon capture. The hydrophilic TiO2 nanoparticles reduced membrane pore size and hydrophobicity in dual bath coagulation, but they offered active sites for silane modification as proven by Fourier-transform infrared spectra to achieve a water contact angle up to 148.8o. A non-wetting surface near to Cassie- Baxter state was formed due to the nano-roughness of TiO2 nanoparticles and hydrophobic functional groups of silane. The modified membrane showed higher CO2 absorption flux in comparison to the neat PVDF membrane, as much as 114% improvement. The modified membrane also achieved faster carbon capture into water. Furthermore, PVDF and PVDF/TiO2 membranes modified with octadecyltrichloro silane in ethanol (volume ratio of 5 : 50) were less affected by NaOH absorbent, displaying great potential for carbon capture and storage using alkaline waste.
[References]
  1. International Energy Agency, https://www.iea.org/geco/.html, (accessed 16 August 2019).
  2. Equinor, https://www.equinor.com/en/news/2019-06-12-sleipner-co2-storage-data.html, (accessed 16 August 2019).
  3. NRG, https://www.nrg.com/case-studies/petra-nova.html, (accessed 16 August 2019).
  4. Kader BA, https://gulfnews.com/business/energy/abu-dhabis-carbon- aptureproject-on-track-1.1458076.html, (accessed 16 August 2019).
  5. Tanaka Y, Sawada Y, Tanase D, Tanaka J, Shiomi S, Kasukawa T, Energy Procedia, 114, 5836, 2017
  6. Department of Energy, https://www.energy.gov/fe/articles/doeannounces-major-milestone-reached-illinois-industrial-ccs-project, (accessed 16 August 2019).
  7. Murnandari A, Kang J, Youn MH, Park KT, Kim HJ, Kang SP, Jeong SK, Korean J. Chem. Eng., 34(3), 935, 2017
  8. Ji L, Yu H, in Carbon dioxide sequestration in cementitious construction materials, Woodhead Publishing, London (2018).
  9. Kang D, Park S, Jo H, Park J, Chem. Eng. J., 248, 200, 2014
  10. Park S, Min J, Lee MG, Jo H, Park J, Chem. Eng. J., 231, 287, 2013
  11. Park S, Jo H, Kang D, Park J, Energy, 75, 624, 2014
  12. Zhao YY, Yuan JS, Zhang JJ, Xie L, Ji ZY, Su M, Chen JX, Desalination, 322, 151, 2013
  13. Zhao YY, Zhang Y, Liu JL, Gao JY, Ji ZY, Guo XF, Liu J, Yuan JS, Desalination, 407, 85, 2017
  14. Cheng W, Fang L, Cheng H, Li E, Zhang C, Cheng F, J. Ind. Eng. Chem., 76, 215, 2019
  15. Dindi A, Quang DV, AlNashef I, Abu-Zahra MRM, Desalination, 442, 62, 2018
  16. Zhang N, Santos RM, Smith SM, Sller L, Chem. Eng. J., 377, 120479, 2019
  17. Salmon I, Cambier N, Luis P, Appl. Sci., 8, 996, 2018
  18. Ji L, Yu H, Yu B, Jiang KQ, Grigore M, Wang XL, Zhao SF, Li KK, Chem. Eng. J., 352, 151, 2018
  19. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109, 2005
  20. Rabuni MF, Sulaiman NMN, Aroua MK, Hashim NA, Ind. Eng. Chem. Res., 52(45), 15874, 2013
  21. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T, Chin. J. Chem. Eng., 26(9), 1845, 2018
  22. Hamzah N, Leo CP, Ooi BS, Chin. J. Polym. Sci., 37, 609, 2019
  23. Rosli A, Ahmad AL, Low SC, Sep. Purif. Technol., 221, 275, 2019
  24. Hamzah N, Leo CP, Sep. Purif. Technol., 167, 79, 2016
  25. Ahmad NA, Leo CP, Ahmad AL, Mohammad AW, Int. J. Hydrog. Energy, 41(8), 4855, 2016
  26. Ahmad NA, Noh ANM, Leo CP, Ahmad AL, Chem. Eng. Res. Des., 118, 238, 2017
  27. Tomaszewska M, Desalination, 104, 1, 1996
  28. Rlahi SH, Escobar IC, in Modern applications in membrane science and technology, American Chemical Society, Washington (2011).
  29. Ahmad AL, Sunarti AR, Lee KT, Fernando WJN, Int. J. Greenh. Gas Con., 4, 495, 2010
  30. Tripp CP, Hair ML, Langmuir, 8, 1120, 1992
  31. Benhabiles O, Galiano F, Marino T, Mahmoudi H, Lounici H, Figoli A, Molecules, 24, 724, 2019
  32. Park SW, Suh DS, Hwang KS, Kumazawa H, Korean J. Chem. Eng., 14(4), 285, 1997
  33. Munirasu S, Banat F, Durrani AA, Abu Haija M, Desalination, 417, 77, 2017
  34. Mistry RJ, Saxena M, Ray P, Singh PS, J. Appl. Polym. Sci., 135, 46043, 2018
  35. Agency for Toxic Substances and Disease Registry, https://www.health.pa.gov/topics/Documents/Environmental%20Health/PFAS%20Exposure%20Assessment%20Technical%20Tools.pdf.html, (accessed 16 August 2019).
  36. Bai H, Wang X, Zhou Y, Zhang L, Pro. Nat. Sci. Mater., 22, 250, 2012
  37. Collazzo GC, Jahn SL, Carreno N, Foletto EL, Braz. J. Chem. Eng., 28, 265, 2011
  38. Coates J, in Encyclopedia of analytical chemistry, John Wiley & Sons, Chichester (2006).
  39. Mansourizadeh A, Ismail AF, Int. J. Greenh. Gas Con., 5, 374, 2011
  40. Rezaei M, Ismail AF, Hashemifard SA, Bakeri G, Matsuura T, Int. J. Greenh. Gas Con., 26, 147, 2014
  41. Hashim NA, Liu YT, Li K, Chem. Eng. Sci., 66(8), 1565, 2011
  42. Wu Q, Zhang X, Cao G, J. Environ. Sci., 67, 294, 2018
  43. Li J, Yan L, Li H, Li J, Zha F, Lei Z, RSC Adv., 5, 53802, 2015
  44. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T, J. Environ. Chem. Eng.,, 6, 1500, 2018