Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 493-496, 2020
Production of biofuels from pine needle via catalytic fast pyrolysis over HBeta
The thermal and catalytic pyrolysis of pine needles over HBeta catalysts with different SiO2/Al2O3 ratios (25 and 300) were investigated by thermogravimetric analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry. TGA showed that the main decomposition of pine needles occurred between 150 and 550 °C. The catalytic DTG curves revealed the same decomposition temperature region as the non-catalytic TG curve of pine needles. Pyrolyzergas chromatography/mass spectrometry suggested that the effective catalytic conversion of pyrolyzate intermediates and other hydrocarbons to aromatic hydrocarbons can be achieved using HBeta catalysts at 600 °C. HBeta(25) produced a larger amount of aromatic hydrocarbons than HBeta(300) because of its higher acid amounts. By increasing the reaction temperature from 500 to 700 °C, the formation of benzene, toluene, ethylbenzene, xylenes (BTEXs) and other polycyclic aromatic hydrocarbons was increased with a concomitant decrease in phenolics and other oxygenates. The formation efficiency of BTEXs was increased further by increasing the catalyst loading.
[References]
  1. Alejandra SB, Daniel LC, Victoria M, Juan JE, Daniel P, Fernando M, Sergi A, Gemma V, Luis FB, Rosalia R, Renew. Energy, 146, 188, 2020
  2. Sutanto S, Go AW, Chen KH, Nguyen PLT, Ismadji S, Ju YH, Fuel Process. Technol., 167, 281, 2017
  3. Bourjjat H, Rodat S, Chuayboon S, Abanades S, Energy, 189, 116118, 2019
  4. McKendry P, Bioresour. Technol., 83(1), 47, 2002
  5. Dhyani V, Bhaskar T, Renew. Energy, 129, 695, 2018
  6. Simeoni A, Thomas JC, Bartoli P, Borowieck P, Reszka P, Colella F, Santoni PA, Torero JL, Fire Safety J., 54, 203, 2012
  7. Varma AK, Mondal P, J. Therm. Anal. Calorim., 131, 2057, 2018
  8. Varma AK, Mondal P, J. Therm. Anal. Calorim., 124, 487, 2016
  9. Font R, Conesa JA, Molto J, Munoz M, J. Anal. Appl. Pyrolysis, 85, 276, 2009
  10. Mandal S, Bhattacharya TK, Verma AK, Haydary J, Chem. Pap., 72, 603, 2018
  11. Park YK, Jung JS, Jae J, Hong SB, Watanabe A, Kim YM, Chem. Eng. J., 377, 199742, 2019
  12. Kim YM, Jae J, Kim BS, Hong Y, Jung SC, Park YK, Energy Conv. Manag., 149, 966, 2017
  13. Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK, Appl. Catal. B: Environ., 95(3-4), 365, 2010
  14. Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012, 2011
  15. Kim BS, Jeong CS, Kim JM, Bin Park S, Park SH, Jeon JK, Jung SC, Kim SC, Park YK, Catal. Today, 265, 184, 2016
  16. Yang J, Chen H, Zhao W, Zhou J, J. Anal. Appl. Pyrolysis, 117, 296, 2016
  17. Challinor JM, J. Anal. Appl. Pyrolysis, 25, 349, 1993
  18. Schultz EL, Mullen CA, Boateng AA, Energy Technol., 5, 196, 2017