Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 482-492, 2020
Antifungal mechanisms of ε-poly-L-Lysine with different molecular weights on Saccharomyces cerevisiae
ε-Poly-L-lysine (ε-PL) is a natural antimicrobial cationic peptide. Antimicrobial activity of ε-PL is closely related to its molecular weight (Mw). However, the antimicrobial mechanisms of ε-PL with different Mws are still vague. In this study, Saccharomyces cerevisiae was used as the model system to analyze the mechanism from these three aspects: cell wall, cell membrane, and metabolism. The results showed that high-Mw ε-PL (1-3 kDa and >3 kDa) and commercial ε-PL product caused cell wall lesions, and significantly improved cell membrane permeability compared to low-Mw ε-PL (<1 kDa), resulting in leaking of the protoplasm through the pores and cell death. Furthermore, metabolomics analysis showed that high-Mw ε-PL (1-3 kDa and >3 kDa) and product displayed higher inhibition effect on the glycolysis pathway and tricarboxylic cycle than that of low-Mw ε-PL (<1 kDa).
[References]
  1. Gould G, Russell N, Food preservatives, Springer (2003).
  2. Ritchie ML, Romanuk TN, Plos One, 7, e34938, 2012
  3. Gao C, Tao Y, Jie D, Fang H, Luo H, Wan Y, Food Hydrocolloids, 36, 204, 2014
  4. Xu Z, Xu Z, Feng X, Xu D, Liang J, Xu H, Appl. Microbiol. Biotechnol., 100, 15, 2016
  5. Miao JY, Zhou JL, Liu G, Chen FL, Chen Y, Gao X, Dixon W, Song M, Xiao H, Cao Y, Food Control, 59, 609, 2016
  6. Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL, Appl. Environ. Microbiol., 80, 7759, 2014
  7. Su R, Li T, Fan D, Huang J, Zhao J, Yan B, Zhou W, Zhang W, Zhang H, J. Sci. Food Agric., 99, 6, 2019
  8. Shima S, Matsuoka H, Iwamoto T, Sakai H, J. Antibiot., 37, 11, 1984
  9. Takehara M, Hibino A, Saimura M, Hirohara H, Biotechnol. Lett., 32, 9, 2010
  10. Wei M, Ge Y, Li C, Chen Y, Wang W, Duan B, Li X, Physiol. Mol. Plant Pathol., 103, 23, 2018
  11. Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar ZP, Xiong Y, Zeng Z, Wei H, Biochem. Biophys. Res. Commun., 439, 1, 2013
  12. Liu K, Zhou X, Fu M, Postharvest Biol. Tec., 123, 94, 2017
  13. Li H, He C, Li G, Zhang Z, Li B, Tian S, Postharvest Biol. Technol., 147, 1, 2019
  14. Wang E, Li Y, Maguy BL, Lou Z, Wang H, Zhao W, Chen X, Food Chem., 294, 533, 2019
  15. Veerman ECI, Valentijn-Benz M, van’t Hof W, Nazmi K, van Marle J, Amerongen AVN, Biol. Chem., 391, 1, 2010
  16. Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J, Przem. Chem., 98(1), 113, 2019
  17. Ding MZ, Zhou X, Yuan Y, Metabolomics, 6, 1, 2010
  18. Shih IL, Shen MH, Van YTJBT, Bioresour. Technol., 97, 9, 2006
  19. Song R, Wei RB, Luo HY, Wang DFJM, Molecules, 17, 3, 2012
  20. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LS, Silva-Pereira I, Kyaw C, Front Microbiol., 4, 353, 2013
  21. Yeaman MR, Yount NY, Pharmacol. Rev., 55, 1, 2003
  22. Ladokhin AS, White SHJBB, BBA-Biomembranes, 1514, 2, 2001
  23. Teixeira V, Feio MJ, Bastos M, Prog. Lipid Res., 51, 2, 2012
  24. Brogden KA, Nat. Rev. Microbiol., 3, 3, 2005
  25. Singer MA, Lindquist S, Trends in Biotechnol., 16, 11 (1998).
  26. Sharma SC, FEMS Microbiol. Lett., 152, 11, 1997
  27. Parrou JL, Teste MA, Francois J, J. Microbiol., 143, 6, 1997
  28. Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot R, Boucherie H, Toledano MB, Labarre J, J. Biol. Chem., 273, 35, 1998
  29. Natera V, Sobrevals L, Fabra A, Castro S, Curr. Microbiol., 53, 6, 2006
  30. Yap S, Lim SJAOM, Arch Microbiol., 135, 3, 1983
  31. Takagi H, Iwamoto F, Nakamori S, Appl. Microbiol. Biotechnol., 47, 4, 1997
  32. Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D, Biosci. Biotechnol. Biochem., 68, 4, 2004
  33. Li H, Ma M, Luo S, Zhang R, Han P, Hu W, Int. J. Biochem. Cell B., 44, 7, 2012
  34. Ding M, Wang X, Yang Y, Yuan Y, OMICS: J. Integrative Biol., 15, 10, 2011
  35. Barsch A, Carvalho HG, Cullimore JV, Niehaus K, J. Biotechnol., 127, 1, 2006