Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 475-481, 2020
Preparation and enzymatic activity of Fe3O4-IDA-Ni/NAD kinase magnetic catalyst
The use of oxidoreductases as biocatalysts for industrial production of valuable compounds has a strong demand for NADP. Herein, we prepared superparamagnetic NAD kinase catalyst to synthesize NADP in vitro. First, Fe3O4 particles were synthesized through a solvothermal method, followed by the chemical modification with epichlorohydrin, iminodiacetic acid, and Ni2+ to yield functional Fe3O4 sub-microspheres. Subsequently, NAD kinase of Escherichia coli was overexpressed and immobilized on to the surface of magnetic sub-microspheres. The immobilized NAD kinase was used to catalyze the conversion of NAD to NADP in a cell-free system. Under optimal condition, the conversion ratio of NAD reached 91.7% and remained at 86.3% after repeated use for five times. Our study revealed that the novel magnetic NAD kinase catalyst possessed favorable properties for magnetic manipulation and NADP production.
[References]
  1. Wang Y, San KY, Bennett GN, Curr. Opin. Biotechnol., 24, 994, 2013
  2. Iyanagi T, BBA-Bioenergetics, 1860, 233, 2019
  3. Ying WH, Antioxid. Redox Sign., 10, 179, 2008
  4. Magni G, Orsomando G, Raffaelli N, Mini-Rev. Med. Chem., 6, 739, 2006
  5. Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB, Appl. Microbiol. Biotechnol., 98(4), 1517, 2014
  6. Zhao H, Van Der Donk WA, Curr. Opin. Biotechnol., 14, 583, 2003
  7. Uchida T, Watanabe T, Kato J, Chibata I, Biotechnol. Bioeng., 20, 255, 1978
  8. Tanaka Y, Hayashi T, Kawashima K, Yokoyama T, Watanabe T, Biotechnol. Bioeng., 24, 857, 1982
  9. Murata K, Kato J, Chibata I, Biotechnol. Bioeng., 21, 887, 1979
  10. Matsushita H, Yokoyama S, Obayashi A, Can. J. Microbiol., 32, 585, 1986
  11. Kawai S, Mori S, Mukai T, Matsukawa H, Matuo Y, Murata K, J. Biosci. Bioeng., 92(5), 447, 2001
  12. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J, ACS Catalysis, 3, 2823, 2013
  13. Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S, Small, 8, 154, 2012
  14. Mu X, Qiao J, Qi L, Dong P, Ma H, ACS Appl. Mater. Inter., 6, 21346, 2014
  15. Singh RK, Tiwari MK, Singh R, Lee JK, Int. J. Mol. Sci., 14(1), 1232, 2013
  16. Ma J, Zhang L, Liang Z, Zhang W, Zhang Y, Anal. Chim. Acta, 632, 1, 2009
  17. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN, Chem. Rev., 108(6), 2064, 2008
  18. Liao MH, Chen DH, Biotechnol. Lett., 23(20), 1723, 2001
  19. Sohrabi N, Rasouli N, Torkzadeh M, Chem. Eng. J., 240, 426, 2014
  20. Sen T, Sebastianelli A, Bruce IJ, J. Am. Chem. Soc., 128(22), 7130, 2006
  21. Liu B, Liu J, Nano Res., 10, 1125, 2017
  22. Pan J, Ou Z, Tang L, Shi H, Korean J. Chem. Eng., 36(5), 729, 2019
  23. Jose L, Lee C, Hwang A, Park JH, Song JK, Paik HJ, Eur. Polym. J., 112, 524, 2019
  24. Cai Z, Wei Y, Wu M, Guo Y, Xie Y, Tao R, Li R, Wang P, Ma A, Zhang H, ACS Sus. Chem. Eng., 7, 6685, 2019
  25. Veisi H, Ghorbani M, Hemmati S, Mat. Sci. Eng. C, 98, 584, 2019
  26. Zhang Q, Zheng Z, Liu C, Liu C, Tan T, Colloids Surf. B: Biointerfaces, 140, 446, 2016
  27. Guo X, Mao F, Wang W, Yang Y, Bai Z, ACS Appl. Mat. Inter., 7, 14983, 2015
  28. Chen YW, Wang JL, Chem. Eng. J., 168(1), 286, 2011
  29. He F, Fan J, Ma D, Zhang L, Leung C, Chan HL, Carbon, 48, 3139, 2010
  30. Lei Z, Jiang Q, J. Agric. Food Chem., 59, 2592, 2011
  31. Hu B, Pan J, Yu HL, Liu JW, Xu JH, Process Biochem., 44(9), 1019, 2009
  32. Bayramoglu G, Kaya B, Arica MY, Food Chem., 92, 261, 2005
  33. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K, Eur. J. Biochem., 268, 4359, 2001