Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 448-455, 2020
Synthesis of MoOx nanostructures with the assistance of polymeric surfactants for dye removal from water
MoO3 and reduced molybdenum oxides (MoOx, x=2.87 and 2) were successfully synthesized through a onepot hydrothermal method without and with adding polymeric surfactants (PVP or PVA) as capping and reducing agents into the reaction solution. The synthesized nanostructures were characterized by different techniques. Adding polymeric surfactants into hydrothermal reaction solution had significant effect on the structural, optical and morphological properties of products. Orthorhombic phase of MoO3 nanorods, monoclinic phase of MoO2.87 nanoparticles and monoclinic phase of MoO2 nanoparticles were obtained in the absence and in the presence of PVP and PVA, respectively. The specific surface area of MoO3, MoO2.87 and MoO2 samples calculated by the BET method was found to be 15.64, 5.94 and 87.62m2g?1, respectively. The dye adsorption capability of products was investigated for removal of RhB molecules from water. The experimental results indicated that the RhB adsorption on MoO2 is much faster and higher than that of MoO3 and MoO2.87, which can be attributed to the larger specific surface area. Furthermore, the kinetic models and isotherm models were studied to determine the adsorption rate and mechanism of RhB adsorption onto the products.
[References]
  1. Cramer AJ, Cole JM, J. Mater. Chem. A, 5, 10746, 2017
  2. Natarajan K, Bajaj HC, Tayade RJ, J. Ind. Eng. Chem., 34, 146, 2016
  3. Adhikari S, Mandal S, Sarkar D, Kim DH, Madras G, Appl. Surf. Sci., 420, 472, 2017
  4. Liu XX, Gong WP, Luo J, Zou CT, Yang Y, Yang SJ, Appl. Surf. Sci., 362, 517, 2016
  5. Wang SY, Yang B, Liu YP, J. Colloid Interface Sci., 507, 225, 2017
  6. Toor M, Jin B, Chem. Eng. J., 187, 79, 2012
  7. Li LP, Kwan JKC, Yeung KL, Chem. Eng. J., 368, 10, 2019
  8. Arumugham T, Amimodu RG, Kaleekkal NJ, Rana D, J. Environ. Sci., 82, 57, 2019
  9. Tahmasebi N, Mirzavand S, Hakimyfard A, Barzegar S, Adv. Powder Technol., 30(2), 257, 2019
  10. Adhikari S, Kim DH, Korean J. Chem. Eng., 36(3), 468, 2019
  11. Zhang S, Yang H, Huang H, Gao H, Wang X, Cao R, Li J, Xu X, Wang X, J. Mater. Chem. A, 5, 15913, 2017
  12. Ryu SM, Nam C, Phys. Status Solidi, 215, 170099, 2018
  13. Jeon S, Yong K, J. Mater. Chem., 20, 10146, 2010
  14. Wang M, Song XX, Cheng XL, Zhou X, Zhang XF, Cai Z, Xu YM, Gao S, Zhao H, Huo LH, RSC Adv., 5, 85248, 2015
  15. Xiao L, Zhang SS, Huang JH, Powder Technol., 258, 297, 2014
  16. Mu W, Li M, Li X, Ma Z, Zhang R, Yu Q, Lv K, Xie X, He J, Wei H, Jian Y, Dalton Trans., 44, 7419, 2015
  17. Lin KJ, Qin M, Geng XG, Wang LD, Wua HJ, Adv. Powder Technol., 29(8), 1933, 2018
  18. Wang N, Chen J, Wang JA, Feng JT, Yan W, Powder Technol., 347, 93, 2019
  19. Zhan Y, Liu Y, Zu H, Guo Y, Wu S, Yang H, Liu Z, Lei B, Zhuang J, Zhang X, Huang D, Nanoscale, 10, 5997, 2018
  20. Huang Q, Hu S, Zhuang J, Wang X, Chem. Eur. J., 18, 15283, 2012
  21. Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G, Anal. Chem., 89, 11765, 2017
  22. Zhao Y, Zhang Y, Yang Z, Yan Y, Sun K, Sci. Technol. Adv. Mat., 14, 043501, 2013
  23. Li XY, Shao J, Li J, Zhang L, Qu QT, Zheng HH, J. Power Sources, 237, 80, 2013
  24. Liu W, Li X, Li W, Zhang Q, Bai H, Li J, Xi G, Biomaterials, 163, 43, 2018
  25. Hu HM, Xu JC, Deng CH, Ge XQ, Mater. Res. Bull., 51, 402, 2014
  26. Hu ZF, Liu G, Chen XQ, Shen ZR, Yu JC, Adv. Funct. Mater., 26(25), 4445, 2016
  27. Cao Y, Wang H, Ren X, Li F, Wang J, Ding R, Wang L, Wu J, Liu Z, Lv B, CrystEngComm, 21, 5106, 2019
  28. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE, Dalton Trans., 44, 17883, 2015
  29. Sagitha P, Sarada K, Muraleedharan K, Trans. Nonferrous Met. Soc. China, 26, 2693, 2016
  30. Washio I, Xiong YJ, Yin YD, Xia YN, Adv. Mater., 18(13), 1745, 2006
  31. Reddy CVS, Walker EH, Wicker SA, Williams QL, Kalluru RR, J. Solid State Electr., 13, 1945, 2009
  32. Etman AS, Abdelhamid HN, Yuan Y, Wang L, Zou X, Sun J, ACS Omega, 3, 2193, 2018
  33. Reddy CVS, Qi YY, Jin W, Zhu QY, Deng ZR, Chen W, Mho SI, J. Solid State Electr., 11, 1239, 2007
  34. Patil RS, Uplane MD, Patil PS, Appl. Surf. Sci., 252(23), 8050, 2006
  35. Zhang H, Zeng L, Wu X, Lian L, Wei M, J. Alloy. Compd., 580, 358, 2013
  36. Kharazmi A, Faraji N, Hussin RM, Saion E, Yunus WMM, Behzad K, Beilstein J. Nanotechnol., 6, 529, 2015
  37. Zhang Y, Sun K, Wu D, Xie W, Xie F, Zhao X, Wang X, ChemCatChem, 11, 2546, 2019
  38. Song H, You S, Jia X, Appl. Phys. A., 121, 541, 2015
  39. Han S, Liu K, Hu L, Teng F, Yu P, Zhu Y, Sci. Rep., 7, 43599, 2017
  40. Qiao XQ, Hu FC, Tian FY, Hou DF, Li DS, RSC Adv., 6, 11631, 2016
  41. Li ZZ, Meng XC, Zhang ZS, Mater. Res. Bull., 111, 238, 2019
  42. Gao X, Xiao F, Yang C, Wang J, Su X, J. Mater. Chem. A, 1, 5831, 2013
  43. Rakass S, Hassani HO, Abboudi M, Kooli F, Mohmoud A, Aljuhani A, Al Wadaani F, Molecules, 23, 2295, 2018