Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 423-433, 2020
A detailed numerical study on the evolution of droplet size distribution of dibutyl phthalate in a laminar flow diffusion chamber
A numerical model was used to study the homogeneous nucleation process of dibutyl phthalate (DBP) vapor in a laminar flow diffusion chamber (LFDC); the spatial and temporal evolution of DBP droplet size distribution was governed by the population balance equation (PBE). In the PBE, the nucleation rate was calculated by the selfconsistent correction nucleation theory (SCCNT), droplet coagulation, vapor and droplet deposition losses were considered. The simulation results showed that the nucleation rate predicted by the SCCNT improved the underestimation of that predicted by the classical nucleation theory. Due to vapor deposition before nucleation and droplet deposition after nucleation on the wall, the DBP mass loss was severe, accounting for about 86.3% of the total inlet vapor mass, and the droplet size distribution shifted towards larger diameters. The simulation results agreed well with the experimental data in terms of the droplet size distribution and average number concentration at the outlet of the LFDC because of the detailed droplet dynamic, transport and deposition mechanisms treated in this model. Based on this model, the number of molecules in the critical cluster was calculated using the first nucleation theorem and found to be larger about 50% than that calculated using the Gibbs-Thompson equation.
[References]
  1. Barahona D, Nenes A, J. Geophys. Res., 113, D11211, 2008
  2. Han Z, Han X, Li H, Li P, Korean J. Chem. Eng., 333, 487, 2016
  3. Mochizuki K, Qiu YQ, Molinero V, J. Am. Chem. Soc., 139(47), 17003, 2017
  4. Patakfalvi R, Papp S, Dekany I, J. Nanopart. Res., 9, 353, 2007
  5. Ryu T, Olivas-Martinez M, Sohn HY, Fang ZZ, Ring TA, Chem. Eng. Sci., 65(5), 1773, 2010
  6. Kozisek Z, Demo P, J. Aerosol Sci., 40(9), 802, 2009
  7. Wyslouzil BE, Wolk J, J. Chem. Phys., 145, 211702, 2016
  8. Manka AA, Brus D, Hyvarinen AP, Lihavainen H, Wolk J, Strey R, J. Chem. Phys., 132, 244505, 2010
  9. Hameri K, Kulmala M, J. Chem. Phys., 105(17), 7696, 1996
  10. Wagner PE, Strey R, J. Phys. Chem., 85, 2694, 1981
  11. Looijmans KNH, Van Dongen MEH, Exp. Fluids, 23, 54, 1997
  12. Kane D, Elshall MS, J. Chem. Phys., 105(17), 7617, 1996
  13. Lesniewski TK, Friedlander SK, P. Roy. Soc. A-Math. Phys., 454, 2477, 1998
  14. Lihavainen H, Viisanen Y, Kulmala M, J. Chem. Phys., 114(22), 10031, 2001
  15. Anisimov MP, Cherevko AG, J. Aerosol Sci., 16, 97, 1985
  16. Okuyama K, Kousaka Y, Warren DR, Flagan RC, Seinfeld JH, Aerosol Sci. Technol., 6, 15, 1987
  17. Hameri K, Kulmala M, Krissinel E, Kodenyov G, J. Chem. Phys., 105(17), 7683, 1996
  18. Nguyen HV, Okuyama K, Mimura T, Kousaka Y, Flagan RC, Seinfeld JH, J. Colloid Interface Sci., 119, 491, 987
  19. Wagner PE, Anisimov MP, J. Aerosol Sci., 24, S103, 1993
  20. Anisimov MP, Hameri K, Kulmala M, J. Aerosol Sci., 25, 23, 1994
  21. AeroSolved, available at: https://www.intervals.science/resources/aerosolved, accessed on September 10th, 2019.
  22. Frederix EMA, Stanic M, Kuczaj AK, Nordlund M, Geurts BJ, Int. J. Multiph. Flow, 74, 184, 2015
  23. Girshick SL, Chiu CP, J. Chem. Phys., 93, 1273, 1990
  24. KRUIS FE, SCHOONMAN J, SCARLETT B, J. Aerosol Sci., 25(7), 1291, 1994
  25. Kormer R, Schmid HJ, Peukert W, J. Aerosol Sci., 41(11), 1008, 2010
  26. Neuber G, Kronenburg A, Stein OT, Cleary MJ, Chem. Eng. Sci., 167, 204, 2017
  27. Winkelmann C, Kuczaj AK, Nordlund M, Geurts BJ, J. Eng. Math., 108, 171, 2017
  28. Winkelmann C, Nordlund M, Kuczaj AK, Stolz S, Geurts BJ, Int. J. Numer. Meth. Fluids, 74, 313, 2014
  29. Patankar S, Numerical heat transfer and fluid flow, CRC press, New York (1980).
  30. Mullick K, Bhabhe A, Manka A, Wolk J, Strey R, Wyslouzil BE, J. Phys. Chem. B, 119(29), 9009, 2015
  31. Hinds WC, Aerosol technology: properties, behavior, and measurement of airborne particles, Wiley, New York (1999).
  32. Lee KW, Chen H, Aerosol Sci. Technol., 3, 327, 1984
  33. Youn JS, Park SJ, Cho HW, Jung YW, Jeon KJ, Korean J. Chem. Eng., 35(9), 1948, 2018
  34. Frederix EMA, Kuczaj AK, Nordlund M, Veldman AEP, Geurts BJ, J. Aerosol Sci., 104, 123, 2017
  35. OpenFOAM, available at: https://www.openfoam.com, accessed on September 10th, 2019.
  36. Bhusare VH, Dhiman MK, Kalaga DV, Roy S, Joshi JS, Chem. Eng. J., 317, 157, 2017
  37. Lin JS, Tsai CJ, Chang CP, J. Aerosol Sci., 35(10), 1235, 2004
  38. Hong W, Wang X, Korean J. Chem. Eng., 35(7), 1517, 2018
  39. Kashchiev D, J. Chem. Phys, 76, 5098, 1982
  40. Kodenev GG, Samodurov AV, Baldin MN, Baklanov AM, Colloid J., 76, 38, 2014
  41. Wilck M, Hameri K, Stratmann F, Kulmala M, J. Aerosol Sci., 29(8), 899, 1998