Issue
Korean Journal of Chemical Engineering,
Vol.37, No.3, 387-401, 2020
Biological conversion of lignin and its derivatives to fuels and chemicals
Lignocellulosic biomass, which is one of the most abundant and renewable sources for the production of clean fuels and chemicals, consists mainly of cellulose, hemicellulose and lignin. The conversion of cellulose and hemicellulose to value added products has been extensively carried out over the last few decades. However, the direct conversion of lignin, the second most abundant aromatic polymer on earth, is challenging due to its heterogeneity and low reactivity. Most of the lignin produced in the pulp and paper industry is used as a fuel to generate heat and electricity. Recently, the chemical or biological conversion of lignin is considered one of the most promising technologies for the production of high-value products. The biological conversion of lignin has several advantages over the chemical conversion route in terms of low operating costs, high specificity, and the absence of harsh operating conditions and hazardous chemicals. The present review summarizes recent studies on biological valorization of lignin to value-added products. Additionally, this review emphasizes the various lignin extraction techniques, catabolic pathways involved, necessary enzymes, and the major challenges of this process.
[References]
  1. Sagues WJ, Bao H, Nemenyi JL, Tong Z, ACS Sustain. Chem. Eng., 6, 4958
  2. Yu IKM, Tsang DCW, Bioresour. Technol., 238, 716, 2017
  3. Karkas MD, ChemSusChem, 10, 2111, 2017
  4. Li CZ, Zhao XC, Wang AQ, Huber GW, Zhang T, Chem. Rev., 115(21), 11559, 2015
  5. Chatel G, Rogers RD, ACS Sustain. Chem. Eng., 2, 322, 2014
  6. Gosselink RJA, De Jong E, Guran B, Abacherli A, Ind. Crop. Prod., 20, 121, 2004
  7. Grossman A, Wilfred V, Curr. Opin. Biotechnol., 56, 112, 2019
  8. Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR, Curr. Opin. Biotechnol., 42, 40, 2016
  9. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, et al., Science, 344, 124684, 2014
  10. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 110(6), 3552, 2010
  11. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, et al., Int. Microbiol., 8, 195, 2005
  12. Collard FX, Blin J, Renew. Sust. Energ. Rev., 38, 594, 2014
  13. Liu ZH, Le RK, Kosa M, Yang B, Yuan J, Ragauskas AJ, Renew. Sust. Energ. Rev., 105, 349, 2019
  14. Wang HL, Pu YQ, Ragauskas A, Yang B, Bioresour. Technol., 271, 449, 2019
  15. Liu C, Wu SL, Zhang HY, Xiao R, Fuel Process. Technol., 191, 181, 2019
  16. Subramani V, Gangwal SK, Energy Fuels, 22(2), 814, 2008
  17. Bahri S, Patra T, Sonal, Upadhyayula S, Microporous Mesoporous Mater., 275, 1, 2019
  18. Wang SR, Dai GX, Yang HP, Luo ZY, Prog. Energy Combust. Sci., 62, 33, 2017
  19. Shen D, Jin W, Hu J, Xiao R, Luo K, Renew. Sust. Energ. Rev., 51, 761, 2015
  20. Liu C, Hu J, Zhang HY, Xiao R, Fuel, 182, 864, 2016
  21. Liu C, Wang X, Lin F, Zhang HY, Xiao R, Fuel Process. Technol., 169, 50, 2018
  22. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R, Nat. Prod. Rep, 28, 1883, 2011
  23. Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TDH, J. Appl. Microbiol., 113(3), 521, 2012
  24. Xie S, Qin X, Cheng Y, Laskar D, Qiao W, Sun S, Reyes LH, Wang X, Dai SY, Sattler SE, Kao K, Yang B, Zhang X, Yuan JS, Green Chem., 17, 1657, 2015
  25. Xie X, Syrenne R, Sun S, Yuan JS, Curr. Opin. Biotechnol., 27, 195, 2014
  26. Ni J, Tokuda G, Biotechnol. Adv., 31, 838, 2013
  27. Schutyser W, Renders T, Van Den Bosch S, Koelewijn SF, Beckham GT, Sels BF, Chem. Soc. Rev., 47, 852, 2018
  28. Chen Z, Wan C, Renew. Sust. Energ. Rev., 73, 610, 2017
  29. Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M et al.,, Biotechnol. Adv., 34, 1318, 2016
  30. Mahmood N, Yuan ZS, Schmidt J, Xu CB, Bioresour. Technol., 139, 13, 2013
  31. Tribot A, Amer G, Abdou Alio M, de Baynast H, Delattre C, et al., Eur. Polym. J., 112, 228, 2019
  32. Fredheim GE, Braaten SM, Christensen BE, J. Chromatogr. A, 942, 191, 2002
  33. Zhao XB, Cheng KK, Liu DH, Appl. Microbiol. Biotechnol., 82(5), 815, 2009
  34. Avellar BK, Glasser WG, Biomass Bioenerg., 14(3), 205, 1998
  35. Rajendran K, Drielak E, Sudarshan Varma V, Muthusamy S, Kumar G, Biomass Convers. Biorefinery, 8, 471, 2018
  36. Liu W, Chen W, Hou Q, Wang S, Liu F, RSC Adv., 8, 10207, 2018
  37. Thomas VA, Donohoe BS, Li M, Pu Y, Ragauskas AJ, Kumar R, Nguyen TY, Cai CM, Wyman CE, Biotechnol. Biofuels, 10, 252, 2017
  38. Shahbazi A, Zhang B, Bioalcohol production, Woodhead Publishing, United Kingdom (2010).
  39. Lloyd TA, Wyman CE, Bioresour. Technol., 96(18), 1967, 2005
  40. Ibanez AB, Bauer S, Biomass Bioenerg., 68, 75, 2014
  41. Kim JS, Lee YY, Kim TH, Bioresour. Technol., 199, 42, 2016
  42. Tolbert, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ, Biofuel. Bioprod. Bior., 8, 836, 2014
  43. Hassan SS, Williams GA, Jaiswal AK, Bioresour. Technol., 262, 310, 2018
  44. Kumar G, Sivagurunathan P, Zhen GY, Kobayashi T, Kim SH, Xu KQ, Bioresour. Technol., 245, 196, 2017
  45. Kaldstrom M, Meine N, Fares C, Rinaldi R, Schuth F, Green Chem., 16, 2454, 2014
  46. Calvaruso G, Clough MT, Rinaldi R, Green Chem., 19, 2803, 2017
  47. Chen X, Shekiro J, Pschorn T, Sabourin M, Tao L, Elander R, et al., Biotechnol. Biofuels, 7, 98, 2014
  48. Chen X, Wang W, Ciesielski P, Trass O, Park S, Tao L, Tucker MP, ACS Sustain. Chem. Eng., 4, 324, 2016
  49. Chen X, Kuhn E, Jennings EW, Nelson R, Tao L, Zhang M, Tucker MP, Energy Environ. Sci., 9, 1237, 2016
  50. Saratale RG, Shin HS, Ghodake GS, Kumar G, Oh MK, Saratale GD, Bioresour. Technol., 258, 26, 2018
  51. Wang Q, Wang ZH, Shen F, Hu JG, Sun FB, Lin LL, Yang G, Zhang YZ, Deng SH, Bioresour. Technol., 166, 420, 2014
  52. Chen Z, Wan CX, Bioresour. Technol., 250, 532, 2018
  53. Kumar G, Sivagurunathan P, Zhen GY, Kobayashi T, Kim SH, Xu KQ, Bioresour. Technol., 245, 196, 2017
  54. Bjorkman A, Nature, 174, 1057, 1954
  55. Jiang B, Cao T, Gu F, Wu W, Jin Y, ACS Sustain. Chem. Eng., 5, 342, 2017
  56. Whetten R, Sederoff R, Plant Cell, 7, 1001, 1995
  57. Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W, Biomacromolecules, 15(1), 327, 2014
  58. Mackenzie AK, Naas AE, Kracun SK, Schuckel J, Fangel JU, Agger JW, Willats WGT, Eijsink VGH, Pope PB, Appl. Environ. Microbiol., 81, 187, 2015
  59. Wong DWS, Appl. Biochem. Biotechnol., 157(2), 174, 2009
  60. Masai E, Katayama Y, Fukuda M, Biosci. Biotechnol. Biochem., 71, 1, 2007
  61. Sato Y, Moriuchi H, Hishiyama S, Otsuka Y, Oshima K, et al., Appl. Environ. Microbiol., 75, 5195, 2009
  62. Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V, Green Chem., 15, 1373, 2013
  63. Marinovic M, Nousiainen P, Dilokpimol A, Kontro J, Moore R, Sipila J, De Vries RP, Makela MR, Hilden K, ACS Sustain. Chem. Eng., 6, 2878, 2018
  64. Gall DL, Ralph J, Donohue TJ, Noguera DR, Environ. Sci. Technol., 48, 12454, 2014
  65. Picart P, Muller C, Mottweiler J, Wiermans L, Bolm C, De Marfa PD, Schallmey A, ChemSusChem, 7, 3164, 2014
  66. Mnich E, Vanholme R, Oyarce P, Liu S, Lu F, Goeminne G, et al., Plant Biotechnol. J., 15, 581, 2017
  67. Pandey MP, Kim CS, Chem. Eng. Technol., 34(1), 29, 2011
  68. Pieper DH, Appl. Microbiol. Biotechnol., 67(2), 170, 2005
  69. Ornston LN, J. Biol. Chem., 241, 3787, 1966
  70. Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B, Biotechnol. Biofuels., 10, 44, 2017
  71. Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P, Appl. Microbiol. Biotechnol., 98(23), 9527, 2014
  72. Bugg TDH, Ahmad M, Hardiman EM, Singh R, Curr. Opin. Biotechnol., 22, 394, 2011
  73. Pradhan S, Dikshit PK, Moholkar VS, Polym. Adv. Technol., 29, 2392, 2018
  74. Kumar P, Maharjan A, Jun HB, Kim BS, Biotechnol. Appl. Biochem., 66, 153, 2019
  75. Yu J, Stahl H, Bioresour. Technol., 99(17), 8042, 2008
  76. Tomizawa S, Chuah JA, Matsumoto K, Doi Y, Numata K, ACS Sustain. Chem. Eng., 2, 1106, 2014
  77. Si M, Yan X, Liu M, Shi M, Wang Z, Wang S, Zhang J, Gao C, Chai L, Shi Y, ACS Sustain. Chem. Eng., 6, 7969, 2018
  78. Linger JG, Vardon DR, Guarnieri MT, Karp EM, et al., Proc. Natl. Acad. Sci. U.S.A., 111, 12013, 2014
  79. Liu ZH, Olson ML, Shinde S, Wang X, Hao N, Yoo, CG, Green Chem., 19, 4939, 2017
  80. Mehrabi R, Bagheri G, Alipour F, J. Entomol. Zool. Stud., 3, 33, 2015
  81. Bowers T, Vaidya A, Smith DA, Lloyd-Jones G, J. Chem. Technol. Biotechnol., 89(7), 1030, 2014
  82. Rehm BHA, Mitsky TA, Steinbuchel A, Appl. Environ. Microbiol., 67, 3102, 2001
  83. Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, Zhang Z, Yu X, Appl. Environ. Microbiol., 84, e01469, 2018
  84. Numata K, Morisaki K, ACS Sustain. Chem. Eng., 3, 569, 2015
  85. Kumar M, Singhal A, Verma PK, Thakur IS, ACS Omega, 2, 9156, 2017
  86. Lopes MSG, Gomez JGC, Taciro MK, Mendonca TT, Silva LF, J. Ind. Microbiol. Biotechnol., 41, 1353, 2014
  87. Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R, Bioresour. Technol., 259, 451, 2018
  88. Harwood CS, Parales RE, Annu. Rev. Microbiol., 50, 553, 1996
  89. Warhurst AM, Fewson CA, Crit. Rev. Biotechnol., 14, 29, 1994
  90. Xu Z, Lei P, Zhai R, Wen Z, Jin M, Biotechnol. Biofuels, 12, 1, 2019
  91. Eggeling L, Sahm H, Arch. Microbiol., 126, 141, 1980
  92. Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Waltermann M, Steinbuchel A, Microbiology, 148, 1407, 2002
  93. Alvarez HM, Mayer F, Fabritius D, Steinbuchel A, Arch. Microbiol., 165, 377, 1996
  94. Kosa M, Ragauskas AJ, Appl. Microbiol. Biotechnol., 93(2), 891, 2012
  95. Shields-Menard SA, AmirSadeghi M, Green M, Womack E, et al., Int. Biodeterior. Biodegrad., 121, 79, 2017
  96. Kosa M, Ragauskas AJ, Green Chem., 15, 2070, 2013
  97. He Y, Li X, Ben H, Xue X, Yang B, ACS Sustain. Chem. Eng., 5, 2302, 2017
  98. Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS, Green Chem., 18, 1306, 2016
  99. Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C, Microb. Cell Fact., 17, 115, 2018
  100. Xie NZ, Liang H, Huang RB, Xu P, AAPG Bull., 32, 615, 2014
  101. Van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchałka J, Wery J, Dos Santos VAPM, Eggink G, Mars AE, J. Biotechnol., 156, 163, 2011
  102. Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, et al., Metab. Eng., 47, 279, 2018
  103. Chua JW, Hsieh JH, World J. Microbiol. Biotechnol., 6, 127, 1990
  104. Johnson CW, Salvachua D, Khanna P, Smith H, Peterson DJ, Beckham GT, Metab. Eng. Commun., 3, 111, 2016
  105. Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C, Metab. Eng., 45, 200, 2018
  106. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, et al., Energy Environ. Sci., 8, 617, 2015
  107. Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT, Metab. Eng. Commun., 5, 19, 2017
  108. Wu W, Dutta T, Varman AM, Eudes A, Manalansan B, Loque D, Singh S, Sci. Rep., 7, 8420, 2017
  109. Fache M, Boutevin B, Caillol S, ACS Sustain. Chem. Eng., 4, 35, 2016
  110. Priefert H, Rabenhorst J, Steinbuchel A, Appl. Microbiol. Biotechnol., 56(3-4), 296, 2001
  111. Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH, ACS Chem. Biol., 8, 2151, 2013
  112. Graf N, Altenbuchner J, Appl. Microbiol. Biotechnol., 98(1), 137, 2014
  113. Kaur B, Chakraborty D, Kumar B, Biomed Res. Int., 2013, 590359, 2013
  114. Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M, J. Biotechnol., 156, 309, 2011
  115. Zhang YHP, Biotechnol. Adv., 33, 1467, 2015
  116. Picart P, De Maria PD, Schallmey A, Front. Microbiol., 6, 916, 2015
  117. Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, et al., J. Basic Microbiol., 41, 185, 2001
  118. Kinnunen A, Maijala P, Jarvinen P, Hatakka A, Curr. Biotechnol., 6, 105, 2016
  119. Bourbonnais R, Paice MG, Febs Lett., 267, 99, 1990
  120. Gianfreda L, Xu F, Bollag J, Gianfreda L, Xu F, Bollag J, Bioremediat. J., 3, 37, 2013
  121. Hilgers R, Vincken JP, Gruppen H, Kabel MA, ACS Sustain. Chem. Eng., 6, 2037, 2018
  122. Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S, Appl. Environ. Microbiol., 63, 4627, 1997
  123. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P, Org. Biomol. Chem., 1, 191, 2003
  124. Eggert C, Temp U, Dean JFD, Eriksson KEL, Febs Lett., 391, 144, 1996
  125. Astolti P, Brandi P, Galli C, Gentili P, Gerini MF, Greci L, Lanzalunga O, New J. Chem., 29, 1308, 2005
  126. Camarero S, Garcia O, Vidal T, Colom J, del Rio JC, Gutierrez A, Gras JM, Monje R, Martinez MJ, Martinez AT, Enzyme Microb. Technol., 35(2-3), 113, 2004
  127. Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A, Enzyme Res., 2011, 217861, 2011
  128. Upadhyay P, Shrivastava R, Agrawal PK, 3 Biotech, 6, 1, 2016
  129. Perez J, Munoz-Dorado J, De La Rubia T, Martinez J, Int. Microbiol., 5, 53, 2002
  130. Gold MH, Wariishi H, Valli K, ACS Symp. Ser., 389, 127, 1989
  131. Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM, Enzyme Microb. Technol., 36(4), 426, 2005
  132. Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A, Fems Microbiol. Rev., 41, 941, 2017
  133. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI, Microbiologyopen, 6, e00394, 2017
  134. Niladevi KN, Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues, Springer Netherlands, 397 (2009).
  135. Hofrichter M, Enzyme Microb. Technol., 30(4), 454, 2002
  136. Mester T, Field JA, J. Biol. Chem., 273, 15412, 1998
  137. Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R, Environ. Sci. Pollut. Res., 22, 8683, 2015
  138. Ravichandran A, Rao RG, Thammaiah V, Gopinath SM, Sridhar M, BioResources, 14, 5132, 2019
  139. Zeng J, Mills MJL, Simmons BA, Kent MS, Sale KL, Green Chem., 19, 2145, 2017
  140. Mohorcic M, Bencina M, Friedrich J, Jerala R, Bioresour. Technol., 100(2), 851, 2009
  141. Fernandez-Fueyo E, Linde D, Almendral D, Lopez-Lucendo MF, Ruiz-Duenas FJ, Martinez AT, Appl. Microbiol. Biotechnol., 99(21), 8927, 2015
  142. Kim SJ, Shoda M, Appl. Environ. Microbiol., 65, 1029, 1999
  143. Johjima T, Ohkuma M, Kudo T, Appl. Microbiol. Biotechnol., 61(3), 220, 2003
  144. Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M, Appl. Microbiol. Biotechnol., 85(6), 1869, 2010
  145. Salvachua D, Prieto A, Martinez AT, Martinez MJ, Appl. Environ. Microbiol., 79, 4316, 2013
  146. Roberts JN, Singh R, Grigg JC, Murphy MEP, Bugg TDH, Eltis LD, Biochemistry, 50, 5108, 2011
  147. Rahmanpour R, Bugg TDH, Arch. Biochem. Biophys., 574, 93, 2015
  148. Lee S, Kang M, Bae JH, Sohn JH, Sung BH, Front. Bioeng. Biotechnol., 7, 209, 2019
  149. Loncar N, Colpa DI, Fraaije MW, Tetrahedron, 72, 7276, 2016
  150. Rahmanpour R, Rea D, Jamshidi S, Fulop V, Bugg TDH, Arch. Biochem. Biophys., 594, 54, 2016
  151. Avram A, Sengupta A, Pfromm PH, Zorn H, Lorenz P, Schwarz T, Nguyen KQ, Czermak P, Biocatalysis, 4, 1, 2018
  152. Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG, Biol. Chem., 384, 1049, 2003
  153. Shi Y, Yan X, Li Q, Wang X, Liu MR, Xie SX, Chai LY, Yuan JS, Process Biochem., 52, 238, 2017
  154. Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ, Green Chem., 17, 2784, 2015
  155. Wells T, Wei Z, Ragauskas A, Biomass Bioenerg., 72, 200, 2015
  156. Hu M, Wang J, Gao Q, Bao J, J. Biotechnol., 281, 81, 2018
  157. Wang ZN, Li N, Pan XJ, Fuel, 240, 119, 2019
  158. Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, Suzuki S, Kamimura N, Masai E, ACS Sustain. Chem. Eng., 6, 1256, 2018
  159. Salvachua D, Johnson CW, Singer CA, Rohrer H, Peterson DJ, Black BA, Knapp A, Beckham GT, Green Chem., 20, 5007, 2018
  160. Rodriguez A, Salvachua D, Katahira R, Black BA, Cleveland NS, et al., ACS Sustain. Chem. Eng., 5, 8171, 2017