Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 176-183, 2020
Carbon supported palladium-copper bimetallic catalysts for promoting electrochemical oxidation of formic acid and its utilization in direct formic acid fuel cell
Carbon supported palladium-copper (Pd-Cu) bimetallic catalysts (PdxCuy/Cs) are fabricated by modified polyol method to enhance the reaction rate of formic acid oxidation reaction (FAOR) and the performance of direct formic acid fuel cell (DFAFC) through weakening the bond with the intermediate of formic acid. According to the evaluations, when the ratio of Pd and Cu is 3 : 1 (Pd3Cu1/C), catalytic activity is best. Its maximum current density is 1.68-times better than that of commercial Pd/C. Even from the optical and spectroscopic characterizations, such as TEM, EDS, XPS and XRD, Pd3Cu1/C shows an optimal particle size and a higher degree of alloying. This is because in Pd3Cu1/C catalyst, the d-band center that induces the weakening in adsorption of formate anion groups to Pd surface is most positively shifted, and this positive shift promotes the reaction rate of FAOR, which is the rate determining step. When the performance of DFAFCs using the PdxCuy/C catalysts is measured, the maximum power density (MPD) of DFAFC using Pd3Cu1/C catalyst is 158mW cm?2, and this is the best MPD compared to that of DFAFCs using other PdxCuy/C catalysts. In addition, in a comparison with commercial Pd/C catalyst, when the same amount of catalyst is loaded, MPD of DFAFC using Pd3Cu1/C catalyst is 22.5% higher than that of DFAFC using commercial Pd/C.
[References]
  1. Hansen K, Breyer C, Lund H, Energy, 175, 471, 2019
  2. Jain S, Chen HY, Schwank J, J. Power Sources, 160(1), 474, 2006
  3. Lipman TE, Edwards JL, Kammen DM, Energy Policy, 32(1), 101, 2004
  4. Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799, 2017
  5. Jung HY, Jeong S, Kwon Y, J. Electrochem. Soc., 163(1), A5090, 2016
  6. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  7. Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081, 2014
  8. Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500, 2019
  9. Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547, 2018
  10. Cheng X, Shi Z, Glass N, Zhang L, Zhang JJ, Song DT, Liu ZS, Wang HJ, Shen J, J. Power Sources, 165(2), 739, 2007
  11. Kim T, Lee S, Park H, Renew. Sust. Energ. Rev., 15, 3676, 2011
  12. Hyun K, Lee JH, Yoon CW, Kwon Y, Int. J. Electrochem. Sci., 8, 11752, 2013
  13. Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH, Brunner TC, Kircher O, Int. J. Hydrog. Energy, 35(3), 1219, 2010
  14. Hua TQ, Ahluwalia RK, Peng JK, Kromer M, Lasher S, McKenney K, Law K, Sinha J, Int. J. Hydrog. Energy, 36(4), 3037, 2011
  15. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009, 2017
  16. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916, 2017
  17. Demirci UB, J. Power Sources, 169(2), 239, 2007
  18. Qian WM, Wilkinson DP, Shen J, Wang HJ, Zhang JJ, J. Power Sources, 154(1), 202, 2006
  19. Yu XW, Pickup PG, J. Power Sources, 182(1), 124, 2008
  20. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018
  21. Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE, J. Power Sources, 163(1), 71, 2006
  22. Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8, 2004
  23. Heinzel A, Barragan VM, J. Power Sources, 84(1), 70, 1999
  24. Baik SM, Kim J, Han J, Kwon Y, Int. J. Hydrog. Energy, 36(19), 12583, 2011
  25. Baik SM, Han J, Kim J, Kwon Y, Int. J. Hydrog. Energy, 36(22), 14719, 2011
  26. Kim S, Han J, Kwon Y, Lee KS, Lim TH, Nam SW, Jang JH, Electrochim. Acta, 56(23), 7984, 2011
  27. Kwon Y, Baek S, Kwon B, Kim J, Han J, Korean J. Chem. Eng., 27(3), 836, 2010
  28. Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX, J. Power Sources, 161(2), 831, 2006
  29. Uwitonze N, Chen YX, Chem. Sci. J., 8, 100016, 2017
  30. Yu Y, Koh YE, Lim H, Jeong B, Isegawa K, Kim D, Ueda K, Kondoh H, Mase K, Crumlin EJ, Ross PN, Gallet J, Bournel F, Mun BS, J. Phys. Condens. Matter, 29, 464001, 2017
  31. Kwon Y, Baik SM, Han J, Kim J, Bull. Korean Chem. Soc., 33, 2539, 2012
  32. Cao J, Zhu Z, Zhao W, Xu J, Chen Z, Chin. J. Chem., 34, 1086, 2016
  33. Hong JW, Kim D, Lee YW, Kim M, Kang SW, Han SW, Angew. Chem., 123, 9038, 2011
  34. Xiao X, Kang TU, Nam HB, Bhang SH, Lee SY, Ahn JP, Yu TY, Korean J. Chem. Eng., 35(12), 2379, 2018
  35. Liao MY, Hu Q, Zheng JB, Li YH, Zhou H, Zhong CJ, Chen BH, Electrochim. Acta, 111, 504, 2013
  36. Matin MA, Jang JH, Kwon YU, J. Power Sources, 262, 356, 2014
  37. Hu SZ, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S, Appl. Catal. B: Environ., 180, 758, 2016
  38. Yang S, Yang J, Chung Y, Kwon Y, Int. J. Hydrog. Energy, 42(27), 17211, 2017
  39. Chen M, Wang ZB, Zhou K, Chu YY, Fuel Cells, 10, 1171, 2010
  40. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M, ACS Catal., 4, 4434, 2014
  41. Scaranto J, Mavrikakis M, Surf. Sci., 650, 111, 2016
  42. Castegnaro MV, Gorgeski A, Balke B, Alves MCM, Morais J, Nanoscale, 8, 641, 2016
  43. Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393, 2006
  44. Xu CX, Liu YQ, Wang JP, Geng HR, Qiu HJ, J. Power Sources, 199, 124, 2012