Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 130-140, 2020
Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar
This study investigates the catalytic oxidation of NO to NO2 over biomass-derived biochar at ambient temperature. Rubber seed shell (RSS) was used as lignocellulosic waste to develop biochar for NO capture. The NO adsorption capacity of pristine biochar was low, about 17.61mg/g at 30 °C. To enhance the NO uptake capacity of biochar, cerium (Ce) was introduced into the biochar surface through simple impregnation method. Upon this, the NO adsorption capacity of 3 wt% Ce-loaded biochar profoundly increased to 75.59mg/g at the same adsorption condition. This was confidently due to the excellent oxygen storage capacity of ceria which could react with free active sites on the biochar surface to form oxidized cites C(O). Characterization results indicated that the adsorbed species was in the form of -O-N=O, suggesting that the adsorption of NO was followed by reaction with surface oxidized sites to form NO2. Studying the kinetics of the NO adsorption using pseudo-second order, Avrami and Elovich models showed that chemisorption was the chief mechanism that governed the adsorption process and the activation energy for NO adsorption was estimated to be around -45 kJ/mol.
[References]
  1. Izquierdo MT, Rubio B, Environ. Sci. Technol., 32, 4017, 1998
  2. Tang X, Gao F, Xiang Y, Yi H, Zhao S, Catal. Commun., 64, 12, 2015
  3. Zhang X, Lin R, Energy Procedia, 158, 4805, 2019
  4. Gao FY, Chu C, Zhu WJ, Tang XL, Yi HH, Zhang RC, Appl. Surf. Sci., 479, 548, 2019
  5. Guo YY, Li YR, Zhu TY, Ye M, Fuel, 143, 536, 2015
  6. Chen JH, Cao FF, Chen SZ, Ni MJ, Gao X, Cen KF, Appl. Surf. Sci., 317, 26, 2014
  7. Rubel AM, Stewart M, Stencel J, J. Mater. Res., 10, 562, 1995
  8. Wang XJ, Xu XC, Liu ST, Zhang Y, Zhao CQ, Yang FL, J. Hazard. Mater., 312, 175, 2016
  9. Rubel AM, Stencel JM, Energy Fuels, 10(3), 704, 1996
  10. Chen H, Wang Y, Lyu YK, Mol. Catal., 454, 21, 2018
  11. Adapa S, Gaur V, Verma N, Chem. Eng. J., 116(1), 25, 2006
  12. Salman AU, Enger BC, Auvray X, Lodeng R, Menon M, Waller D, Ronning M, Appl. Catal. A: Gen., 564, 142, 2018
  13. Cao F, Chen J, Ni M, Song H, Xiao G, Wu W, Gao X, Cen K, Appl. Surf. Sci., 4, 16281, 2014
  14. Stoyanova D, Georgieva P, Avramova I, Aleksieva K, Marinova D, Mehandjiev D, J. Rare Earths, 37, 151, 2019
  15. Mihaylov MY, Ivanova EZ, Aleksandrov HA, Petkov PS, Vayssilov GN, Hadjiivanov KI, Mol. Catal., 451, 114, 2018
  16. Fang C, Zhang D, Shi L, Gao R, Li H, Ye L, Zhang J, Catal. Sci. Technol., 3, 803, 2013
  17. Al-Rahbi AS, Williams PT, Waste Manag., 49, 188, 2016
  18. You FT, Yu GW, Wang Y, Xing ZJ, Liu XJ, Li J, Appl. Surf. Sci., 413, 387, 2017
  19. You FT, Yu GW, Xing ZJ, Li J, Xie SY, Li CX, Wang G, Ren HY, Wang Y, Appl. Surf. Sci., 471, 633, 2019
  20. Lee YW, Choi DK, Park JW, Carbon, 40, 1409, 2002
  21. Li XC, Dong Z, Dou JX, Yu JL, Tahmasebi A, Fuel Process. Technol., 148, 91, 2016
  22. Sumathi S, Bhatia S, Lee KT, Mohamed AR, Chem. Eng. J., 162(1), 51, 2010
  23. Wang W, Guo R, Pan W, Hu G, J. Rare Earths, 36, 588, 2018
  24. Wang W, Li W, Guo R, Chen Q, Wang Q, Pan W, Hu G, J. Rare Earths, 34, 876, 2016
  25. Yu X, Wu X, Chen Z, Huang Z, Jing G, Mol. Catal., 476, 110512, 019
  26. Kudahi SN, Noorpoor AR, Mahmoodi NM, J. CO2 Util., 21, 17, 2017
  27. Lahijani P, Mohammadi M, Mohamed AR, J. CO2 Util., 26, 281, 2018
  28. Juang RS, Chen ML, Ind. Eng. Chem. Res., 36(3), 813, 1997
  29. Wu FC, Tseng RL, Juang RS, Chem. Eng. J., 150(2-3), 366, 2009
  30. Largitte L, Pasquier R, Chem. Eng. Res., 109, 495, 2016
  31. Andreoli E, Cullum L, Barron AR, Ind. Eng. Chem. Res., 54(3), 878, 2015
  32. Teng H, Suuberg EM, J. Phy. Chem., 97, 478, 1993