Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 105-110, 2020
The effect of calcium peroxide originating from oyster shell powder on control of phosphorus compounds in oceanic sediment
This study evaluated the water quality above the marine sediment by inputting oxygen releasing compound (ORC) processed from calcined oyster shells. Presumed vital parameters such as DO, pH, ORP, chlorophyll-a and classified phosphorous compounds were monitored for 20 d. ORP decreased with time in the control bed, while it increased to a positive value as a result of the ORC effect. DO kept showing a relatively high concentration in ORC treated column. We observed an increase of chlorophyll-a and a decrease of dissolved inorganic phosphate (DIP) simultaneously, which meant the released inorganic phosphorus would convert to an organic form in the overlying water. TP rises were the lowest in the ORC column (79%), meanwhile in the control column those went up to 0.304mg/L (85%). Also, phosphorus fractions were measured in the sediment: Fe-P decreased in control while Fe-P and Ca-P soared greatly in the ORC column. This implies that in more oxidized environment inorganic phosphate bound to Ca-species would be eliminated as solidified precipitates in the sediment pore water, and it consequently suppressed the release of phosphates to the overlying water. The results indicate that the release of phosphorus and resulting eutrophication could be effectively controlled via the local environment improved by calcined ORC.
[References]
  1. Chapra SC, Surface water-quality modeling, McGraw-Hill Publisher, New York (1997).
  2. Baturin GN, Lithology Mineral Resources, 38, 101, 2003
  3. Caetano M, Vale C, Mar. Chem., 79, 261, 2002
  4. Coelho JP, Flindt MR, Jensen HS, Lillebo AI, Pardal MA, Estuar. Coas. Shelf Sci., 61, 583, 2004
  5. Fytianos K, Kotzakioti A, Environ. Monit. Assess., 100, 191, 2005
  6. Lijklema L, Koelmans AA, Portielje R, Water Sci. Technol., 28, 1, 1993
  7. Masunaga S, Wolfe NL, Carriera L, Water Sci. Technol., 28, 123, 1993
  8. Holdren GC, Armstrong DE, Environ. Sci. Technol., 14, 79, 1980
  9. Stumm W, Morgan JJ, Aquatic Chemistry 3rd Ed., New York, Wiley (1996).
  10. Furumai H, Kondo T, Ohgaki S, Water Res., 23, 685, 1989
  11. Gonsiorezyk T, Casper P, Koschel R, Water Sci. Technol., 37, 51, 1998
  12. Froelich PN, Bender ML, Luedtke NA, Heath GR, DeVries T, Am. J. Sci., 282, 474, 1982
  13. Mort HP, Slomp CP, Gustafsson BG, Andersen TJ, Geochim. Cosmochim. Acta, 74, 1350, 2010
  14. Yang J, Lin FK, Yang L, Hua DY, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 50, 49 (2015).
  15. Dahl M, Dunning CP, Green T, Water Sci. Technol., 28, 209, 1993
  16. Lu SG, Zhang X, Xue YF, J. Hazard. Mater., 337, 163, 2017
  17. Wang Y, Wang WH, Yan FL, Ding Z, Feng LL, Zhao JC, Sci. Total Environ., 650, 2796, 2019
  18. Lee HS, Park DW, Woo DS, J. Korea Acad. Ind. Cooperation Soc., 10, 3971, 2009
  19. Stookey LL, Anal. Chem., 42, 779, 1970
  20. Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Cappellen PV, Appl. Geochem., 15, 785, 2000
  21. Ruttenberg KC, Limnol. Oceanogr., 37, 1460, 1992
  22. Watanabe FS, Olsen SR, Soil Sci., 93, 183, 1962
  23. Fisher TR, Carlson PR, Barber RT, Estuar. Coas. Shelf Sci., 14, 101, 1982
  24. Ishikawa M, Nishimura H, Water. Res., 23, 351, 1989
  25. Khoshmanesh A, Hart BT, Duncan A, Beckett R, Environ. Technol., 20, 85, 1999
  26. Lijklema L, Interactions between sediments and fresh water, Proc. Int. Symp., 313 (1977).
  27. Hyun J, J. Korean Soc. Oceanogr., 10, 145, 2005
  28. Berner RA, Ruttenberg KC, Ingall ED, Rao JL, Interactions of C, N, P and S Biogeochem. Cycles and Glob. Chang., 14, 365 (1993).
  29. Nealson KH, Saffarini D, Annu. Rev. Microbiol., 48, 311, 1994
  30. Ruttenberg KC, Berner RA, Geochim. Cosmochim. Acta, 57, 991, 1993
  31. Bostrom B, Andersen JM, Fleischer S, Jansson M, Hydrobiologia,, 170, 229, 1988
  32. Cha HJ, Lee CB, Kim BS, Choi MS, Ruttenberg KC, Mar. Geol., 216, 127, 2005