Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 72-79, 2020
Molecular investigation of amine performance in the carbon capture process: Least squares support vector machine approach
The growing threat of global warming has raised more attention towards carbon capture. Current amine plants used for carbon removal suffer from great costs inflicted by high energy demand of the solvent regeneration step. Recently, looking for amines with proper performance in reduced temperatures has been the subject of many researches. Clearly, conducting these researches without any criterion and based only on trial and error wastes large amounts of money and time; thus, it is highly needed that the effect of different amine structural parameters be studied on the amine’s cyclic capacity. Quantitative structure property relationship (QSPR) provides an effective method for predicting amines capacity for CO2 absorption. In this work, density functional theory (DFT) was employed for optimization of the molecular geometries, and linear and nonlinear models based on parameters related to the molecular structure are presented. The value of the square of the correlation coefficient (R2) for the MLR and SVM models are 0.894 and 0.973, respectively. Developed models can be used as a criterion for amine selection. Reliability and high predictability of the models are confirmed based on statistical tests. Moreover, mechanistic interpretation of models for better understanding of the reaction mechanism of carbon capture was discussed.
[References]
  1. Weekly average atmospheric CO2 by the Mauna Loa Observatory. Available: http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html.
  2. Van der Hoeven M, CO2 emissions from fuel combustion-highlights, IEA Statistics (2014).
  3. Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M, Environ. Sci. Technol., 43, 6427, 2009
  4. Wang Z, Fang MX, Pan YL, Yan SP, Luo ZY, Chem. Eng. Sci., 93, 238, 2013
  5. Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817, 2010
  6. Jiang KQ, Li KK, Yu H, Feron PHM, Chem. Eng. J., 347, 334, 2018
  7. Oh SY, Yun S, Kim JK, Appl. Energy, 216, 311, 2018
  8. Zhao B, Liu FZ, Cui Z, Liu CJ, Yue HR, Tang SY, Liu YY, Lu HF, Liang B, Appl. Energy, 185, 362, 2017
  9. Cousins A, Wardhaugh LT, Feron PHM, Int. J. Greenhouse Gas Control, 5, 605, 2011
  10. Garcia-Abuin A, Gomez-Diaz D, Navaza JM, Fuel, 135, 191, 2014
  11. Puxty G, Conway W, Yang Q, Bennett R, Fernandes D, Pearson P, Maher D, Feron P, Int. J. Greenhouse Gas Control, 83, 11, 2019
  12. Murai S, Daigo M, Kato Y, Maesawa Y, Muramatsu T, Saito S, Energy Procedia, 63, 1933, 2014
  13. Zhang JF, Misch R, Tan YD, Agar DW, Chem. Eng. Technol., 34(9), 1481, 2011
  14. Zhang Z, Li Y, Zhang W, Wang J, Soltanian MR, Olabi AG, Renew. Sust. Energ. Rev., 98, 179, 2018
  15. Chakraborty AK, Astarita G, Bischoff KB, Chem. Eng. Sci., 41, 997, 1986
  16. Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239, 1983
  17. Singh P, Niederer JP, Versteeg GF, Int. J. Greenhouse Gas Control, 1, 5, 2007
  18. Singh P, Versteeg GF, Process Saf. Environ. Prot., 86, 347, 2008
  19. Ghaslani D, Gorji ZE, Gorji AE, Riahi S, Chem. Eng. Res. Des., 120, 15, 2017
  20. Gorji AE, Gorji ZE, Riahi S, Korean J. Chem. Eng., 34(5), 1405, 2017
  21. Berhanu WM, Pillai GG, Oliferenko AA, Katritzky AR, ChemPlusChem, 77, 507, 2012
  22. Momeni M, Riahi S, J. Nat. Gas Sci. Eng., 21, 442, 2014
  23. Momeni M, Riahi S, Int. J. Greenhouse Gas Control, 42, 157, 2015
  24. Rezaei B, Riahi S, J. Nat. Gas Sci. Eng., 33, 388, 2016
  25. Suykens JAK, Least squares support vector machines, World Scientific (2002).
  26. Mehraein I, Riahi S, J. Mol. Liq., 225, 521, 2017
  27. Cramer CJ, Bickelhaupt FM, Angew. Chem.-Int. Edit., 42, 381, 2003
  28. Frisch MJ, Nielsen AB, Frisch A, Gaussian 98: Gaussian Incorporated (1998).
  29. Todeschini R, Consonni V, Mauri A, Pavan M, DRAGON version 6, Talete srl, Milan, Italy (2011).
  30. Gray RM, Entropy and information theory, Springer Science & Business Media (2011).
  31. Topliss JG, Costello RJ, J. Med. Chem., 15, 1066, 1972
  32. Topliss JG, Edwards RP, J. Med. Chem., 22, 1238, 1979
  33. Barysz M, Jashari G, Lall RS, Srivastava VK, Trinajstic N, Stud. Phys. Theor. Chem., 28, 222, 1983
  34. Balaban AT, Ciubotariu D, Medeleanu M, AAPG BullJ. Chem. Inf. Comput. Sci., 31, 517, 1991
  35. Todeschini R, Consonni V, Molecular Descriptors for Chemoinformatics, John Wiley & Sons, 41 (2009).
  36. Ghose AK, Crippen GM, J. Comput. Chem., 7, 565, 1986
  37. Golbraikh A, Tropsha A, Mol. Diver., 5, 231, 2000
  38. Tropsha A, Gramatica P, Gombar V, QSAR Comb. Sci., 22, 69, 2003
  39. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T, ATLA-NOTTINGHAM, 33, 445, 2005
  40. Gangarapu S, Marcelis AT, Zuilhof H, ChemphysChem, 14, 3936, 2013
  41. Da Silva EF, Svendsen HF, Int. J. Greenhouse Gas Control, 1, 151, 2007