Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 65-71, 2020
Direct synthesis of H2O2 over Pd/C catalysts prepared by the incipient wetness impregnation method: Effect of heat treatment on catalytic activity
Although various Pd/C catalysts have been applied in the direct synthesis of H2O2, unsatisfactory H2O2 yields have been achieved. We systematically investigated the effect of heat treatment on the physicochemical properties of Pd/C catalyst, and thereby on the catalytic performance in the direct synthesis of H2O2. Pd/C catalysts prepared by the incipient wetness method were subjected to different heat treatments and applied in H2O2 synthesis. The calcination temperature was found to have a key role in determining the Pd nanoparticle (NP) size; calcination at 523 K yielded highly oxidized and small Pd NPs corresponding to the sub-nano domain (1.4-2.5 nm). This Pd/C catalyst is superior not only in promoting H2O2 formation, but also in suppressing the subsequent unfavorable H2O2 decomposition and hydrogenation, which explains its excellent H2O2 productivity (as high as 4,443mmol H2O2/g Pd·h) and selectivity (94.5%). On the other hand, the reaction performance of the Pd/C catalysts calcined at a higher temperature (673 K) or reduced under hydrogen was sharply reduced owing to the formation of larger Pd NPs or the enhancement of the metallic nature of Pd, respectively. The amount of residual Cl ion on Pd/C catalyst after heat treatment also had an impact on the catalytic activity as it affected the pH of reaction solution. These results clearly demonstrate that an efficient Pd/C catalyst can be realized by fine tuning the conditions of heat treatment during catalyst preparation.
[References]
  1. Goor G, Glenneberg J, Jacobi S, Hydrogen Peroxide in Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH, Weinheim (2012).
  2. Wilson NM, Bregante DT, Priyadarshini P, Flaherty DW, Catalysis, 29, 122, 2017
  3. Samanta C, Appl. Catal. A: Gen., 350(2), 133, 2008
  4. Flaherty DW, ACS Catal., 8, 1520, 2018
  5. PERP Report - Propylene Oxide 02/03-8, Nexant, New York (2003).
  6. Ab Rahim MH, Forde MM, Jenkins RL, Hammond C, He Q, Dimitratos N, Lopez-Sanchez JA, Carley AF, Taylor SH, Willock DJ, Murphy DM, Kiely CJ, Hutchings GJ, Angew. Chem.-Int. Edit., 52, 1280, 2013
  7. Edwin NN, Piccinini M, Pritchard JC, He Q, Edwards JK, Carley AF, Moulijn JA, Kiely CJ, Hutchings GJ, Chem-CatChem, 1, 479, 2009
  8. Edwards JK, Freakley SJ, Carley AF, Kiely CJ, Hutchings GJ, Accounts Chem. Res., 47, 845, 2014
  9. Menegazzo F, Signoretto M, Ghedini E, Strukul G, Catalysts, 9, 251, 2019
  10. Ranganathan VSS, Catalysts, 8, 379, 2018
  11. Tu WF, Li XL, Wang RQ, Malhi HS, Ran JY, Shi YL, Han YF, J. Catal., 377, 494, 2019
  12. Lewis RJ, Hutchings GJ, ChemCatChem, 11, 298, 2019
  13. Selinsek M, Deschner BJ, Doronkin DE, Sheppard TL, Grunwaldt JD, Dittmeyer R, ACS Catal., 8, 2546, 2018
  14. Chung YM, Korean Chem. Eng. Res., 53(2), 262, 2015
  15. Wilson NM, Flaherty DW, J. Am. Chem. Soc., 138(2), 574, 2016
  16. Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ, Science, 351(6276), 965, 2016
  17. Seo M, Lee DW, Han SS, Lee KY, ACS Catal., 7, 3039, 2017
  18. Seo M, Kim HJ, Han SS, Lee KY, Catal. Surv. from Asia, 21, 1, 2017
  19. Lee JW, Kim JK, Kang TH, Lee EJ, Song IK, Catal. Today, 293-294, 49, 2017
  20. Ye Y, Chun J, Park S, Kim TJ, Chung YM, Oh SH, Song IK, Lee J, Korean J. Chem. Eng., 29(9), 1115, 2012
  21. Kim JS, Kim HK, Kim SH, Kim I, Yu T, Han GH, Lee KY, Lee KY, Ahn JP, ACS Nano, 13, 4761, 2019
  22. Edwards JK, Edwin NN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Angew. Chem.-Int. Edit., 48, 8512, 2009
  23. Xiao X, Kang TU, Nam HB, Bhang SH, Lee SY, Ahn JP, Yu TY, Korean J. Chem. Eng., 35(12), 2379, 2018
  24. Jang YP, Nam HB, Song J, Lee SY, Ahn JP, Yu TK, Korean J. Chem. Eng., 36(9), 1417, 2019
  25. Edwards JK, Solsona B, Ntainjua EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Science, 323, 1037, 2009
  26. Hu BZ, Deng WP, Li RS, Zhang QH, Wang Y, Delplanque-Janssens F, Paul D, Desmedt F, Miquel P, J. Catal., 319, 15, 2014
  27. Garcia T, Agouram S, Dejoz A, Sanchez-Royo JF, Torrente-Murciano L, Solsona B, Catal. Today, 248, 48, 2015
  28. Arrigo R, Schuster ME, Abate S, Giorgianni G, Centi G, Perathoner S, Wrabetz S, Pfeifer V, Antonietti M, Schlogl R, ACS Catal., 6, 6959, 2016
  29. Yook S, Kwon HC, Kim YG, Choi W, Choi M, ACS Sustain. Chem. Eng., 5, 1208, 2017
  30. Lee S, Jeong H, Chung YM, J. Catal., 365, 125, 2018
  31. Lee S, Chung YM, Mater. Lett., 234, 58, 2019
  32. Chung YM, Kwon YT, Kim TJ, Oh SH, Lee CS, Chem. Commun., 47, 5705, 2011
  33. Kim J, Chung YM, Kang SM, Choi CH, Kim BY, Kwon YT, Kim TJ, Oh SH, Lee CS, ACS Catal., 2, 1042, 2012
  34. Tian PF, Ouyang L, Xu XY, Ao C, Xu XC, Si R, Shen XJ, Lin M, Xu J, Han YF, J. Catal., 349, 30, 2017
  35. Tian PF, Ding DD, Sun Y, Xuan FZ, Xu XY, Xu J, Han YF, J. Catal., 369, 95, 2019
  36. Villa A, Freakley SJ, Schiavoni M, Edwards JK, Hammond C, Veith GM, Wang W, Wang D, Prati L, Dimitratos N, Hutchings GJ, Catal. Sci. Technol., 6, 694, 2016
  37. Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F, Cruciani G, Pinna F, Strukul G, J. Catal., 268(1), 122, 2009
  38. Bernardotto G, Menegazzo F, Pinna F, Signoretto M, Cruciani G, Strukul G, Appl. Catal. A: Gen., 358(2), 129, 2009