Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 54-64, 2020
Catalytic oxidation of benzene over alumina-supported Cu-Mn-Ce mixed oxide catalysts
Based on the response surface methodology (RSM), Cu-Mn-Ce catalysts were prepared via the vacuum impregnation method. Also, Their performance in the oxidation of a tar model compound (Benzene, 5,000 ppm) was evaluated. Results show that the optimum condition is CuO-MnO content of 30% and CeO2 content of 4.4% at a calcination temperature of 620 °C for 4.1 h. In this condition, the confirmatory experiment indicates the average carbon conversion rate within half an hour (Xc-0.5h) and four hours (Xc-4h) are 99.5% and 97.1% at 300 °C, respectively, which is in good agreement with the model prediction. XRD, H2-TPR, SEM, and XPS were employed in catalyst characterization. CuO is the primary active metal in the catalysts, which is affected easily by the calcination temperature. A lower calcination temperature tends to cause a weak structure strength, but a higher temperature results in impairing the reducibility. The major roles of CeO2 are displayed in two aspects that CeO2 increases the dispersion of the active metal, enhances the catalyst stability, and increases the oxygen vacancies and improves the oxygen transfer ability. For Cu-Mn-Ce composite catalyst, the catalytic oxidization of benzene complies with the Mars-van Krevelen mechanism (MVK). The content of CuO-MnO determines the number of active sites on the catalyst, which promotes the reduction of catalyst. CeO2 plays an important role in enhancing the oxidization of the catalyst. Therefore, the ratio of CuOMnO to CeO2 in the catalyst will cause a change of the control step of the redox reaction.
[References]
  1. Lv X, Xiao J, Shen LH, Zhou YY, Int. J. Hydrog. Energy, 41(47), 21913, 2016
  2. Haro P, Ollero P, Perales ALV, Vidal-Barrero F, Biofuel. Bioprod. Bior., 7, 551, 2013
  3. Yan LB, Cao Y, He BS, Chem. Eng. J., 331, 435, 2018
  4. Aneke M, Wang MH, Energy Procedia, 142, 829, 2017
  5. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355, 2011
  6. Lv X, Xiao J, Sun T, Huo X, Song M, Shen L, Korean J. Chem. Eng., 35(2), 394, 2018
  7. Miyazawa T, Kimura T, Nishikawa J, Kado S, Kunimori K, Tomishige K, Catal. Taday, 115, 254, 2006
  8. Guan G, Kaewpanha M, Hao X, Abudula A, Renew. Sust. Energ. Rev., 58, 450, 2015
  9. Xie H, Du Q, Li H, Zhou G, Chen S, Jiao Z, Ren J, Korean J. Chem. Eng., 34(7), 1944, 2017
  10. Hong SS, Lee GH, Lee GD, Korean J. Chem. Eng., 20(3), 440, 2003
  11. Li TY, Chiang SJ, Liaw BJ, Chen YZ, Appl. Catal. B: Environ., 103(1-2), 143, 2011
  12. Yoon SJ, Kim YK, Lee JG, Ind. Eng. Chem. Res., 50(4), 2445, 2011
  13. Tang WX, Deng YZ, Li WH, Li SD, Wu XF, Chen YF, Catal. Commun., 72, 165, 2015
  14. Dorr TB, Schmidt S, Drochner A, Vogel H, Chem. Eng. Technol., 40(2), 351, 2017
  15. Wang YF, Zhang CB, Liu FD, He H, Appl. Catal. B: Environ., 142, 72, 2013
  16. Rui ZB, Chen CY, Lu YB, Ji HB, Chin. J. Chem. Eng., 22(8), 882, 2014
  17. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP, Chem. Rev., 119(7), 4471, 2019
  18. Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117, 2016
  19. Kim SC, Shim WG, Appl. Catal. B: Environ., 92(3-4), 429, 2009
  20. Tabakova T, Ilieva L, Petrova P, Venezia AM, Avdeev G, Zanella R, Karakirova Y, Chem. Eng. J., 260, 133, 2015
  21. Son IH, Lane AM, Johnson DT, J. Power Sources, 124(2), 415, 2003
  22. Lin J, Guo YF, Li CH, Lu SX, Chen X, Liew KM, Catal. Lett., 148(8), 2348, 2018
  23. Wang DS, Li YD, J. Am. Chem. Soc., 132, 6280, 2011
  24. Wang F, Lu GX, Int. J. Hydrog. Energy, 35(13), 7253, 2010
  25. Jiang ZY, Feng XB, Deng JL, He C, Douthwaite M, Yu YK, Liu J, Hao ZP, Zhao Z, Adv. Funct. Mater., 29, 2230, 2019
  26. Wang Z, Shen GL, Li JQ, Liu HD, Wang Q, Chen YF, Appl. Catal. B: Environ., 138, 253, 2013
  27. He C, Yu YK, Yue L, Qiao NL, Li JJ, Shen Q, Yu WJ, Chen JS, Hao ZP, Appl. Catal. B: Environ., 147, 156, 2014
  28. Kim SC, Park YK, Nah JW, Powder Technol., 266, 292, 2014
  29. Aziz A, Sajjad M, Kim S, Saifuddin M, Kim KS, Appl. Sci-Basel, 8, 1920, 2018
  30. Behar S, Gonzalez P, Agulhon P, Quignard F, Swierczynski D, Catal. Taday, 189, 35, 2012
  31. Yang P, Li JR, Zuo SF, Chem. Eng. Sci., 162, 218, 2017
  32. Guo YF, Zhao CW, Lin J, Li CH, Lu SX, Catal. Commun., 99, 1, 2017
  33. Lin J, Guo YF, Chen X, Li CH, Lu SX, Liew KM, Catal. Lett., 148(1), 181, 2018
  34. Li J, Li Q, Chen X, Li CH, Lu SX, Liew KM, Chem. Eng. J., 371, 267, 2019
  35. Koike M, Ishikawa C, Li DL, Wang L, Nakagawa Y, Tomishige K, Fuel, 103, 122, 2013
  36. Liu XW, Zhou KB, Wang L, Wang BY, Li YD, J. Am. Ceram. Soc., 131, 3140, 2009
  37. Li B, Chen YW, Li L, Kan JW, He S, Yang B, Shen SB, Zhu SM, J. Mol. Catal. A-Chem., 415, 160, 2016
  38. Chen HH, Yan Y, Shao Y, Zhang HP, Chen HH, AIChE J., 61(2), 620, 2015
  39. Abdullah AZ, Abu Bakar MZ, Bhatia S, Ind. Eng. Chem. Res., 42(24), 6059, 2003
  40. Li H, Chen H, Yao MF, Li YD, Ind. Eng. Chem. Res., 52(2), 686, 2013
  41. Meyer CI, Borgna A, Monzon A, Garetto TF, J. Hazard. Mater., 190(1-3), 903, 2011
  42. Behar S, Gomez-Mendoza NA, Gomez-Garcia MA, Swierczynski D, Quignard F, Tanchoux N, Appl. Catal. A: Gen., 504, 203, 2015
  43. Huo XD, Xiao J, Song X, Zhu L, J. Anal. Appl. Pyrolysis, 135, 189, 2018
  44. Marino F, Schonbrod B, Moreno M, Jobbagy M, Baronetti G, Laborde M, Catal. Taday, 133, 735, 2008
  45. Zhao HJ, Fang KG, Zhou J, Lin MG, Sun YH, Int. J. Hydrog. Energy, 41(21), 8819, 2016
  46. Delimaris D, Ioannides T, Appl. Catal. B: Environ., 89(1-2), 295, 2009
  47. Zheng XC, Zhang XL, Wang XY, Wang SR, Wu SH, Appl. Catal. A: Gen., 295(2), 142, 2005
  48. Li J, Zhang ZL, Ji YJ, Jin ZY, Zou SY, Zhong ZY, Su FB, Nano Res., 9, 1377, 2016