Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 46-53, 2020
Remarkable effects of deep eutectic solvents on the esterification of lactic acid with ethanol over Amberlyst-15
Deep eutectic solvents (DESs) are widely used in numerous reactions both as a solvent and a catalyst. In this study, different types of DESs were investigated as a supplementary component for Amberlyst-15 to enhance its catalytic activity in the esterification reaction of lactic acid with ethanol. The effects of the following parameters such as DES type, choline chloride : glycerol (ChCl-Gly) (1 : 2) amount, molar ratio of reactants, temperature and agitation rate on the initial rate of reaction and yield of ethyl lactate were investigated. According to the results, DESs alone did not have any catalytic effect on the esterification; however, DESs together with Amberlyst-15 provided a significant increase in the initial rate of reaction and yield. The activation energy of the reaction decreased significantly with the combined use of Amberlyst-15 and ChCl-Gly (1 : 2). Internal and external mass transfer limitations were found to be negligible under optimum reaction conditions.
[References]
  1. Smith EL, Abbott AP, Ryder KS, Chem. Rev., 114(21), 11060, 2014
  2. Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS, Anal. Chim. Acta, 979, 1, 2017
  3. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V, Microchem. J., 135, 33, 2017
  4. Hadj-Kali M, Green Process. Synth., 4, 117, 2015
  5. Lee JS, Nanotechnol. Rev., 6, 271, 2017
  6. Isaifan RJ, Amhamed A, Adv. Chem., 2018, 1, 2018
  7. Musale RM, Shukla SR, Int. J. Plast. Technol., 20, 106, 2016
  8. Patil UB, Singh AS, Nagarkar JM, RSC Adv., 4, 1102, 2014
  9. Wang L, Zhou M, Chen Q, He MY, J. Chem. Res., 37, 598, 2013
  10. Tran PH, Nguyen HT, Hansen PE, Le TN, RSC Adv., 6, 37031, 2016
  11. De Santi V, Cardellini F, Brinchi L, Germani R, Tetrahedron Lett., 53, 5151, 2012
  12. Mondal D, Sharma M, Wang CH, Lin YC, Huang HC, Saha A, Nataraj SK, Prasad K, Green Chem., 18, 2819, 2016
  13. Singh B, Lobo H, Shankarling G, Catal. Lett., 141(1), 178, 2011
  14. Keshavarzipour F, Tavakol H, Catal. Lett., 145(4), 1062, 2015
  15. Aparicio S, Alcalde R, Green Chem., 11, 65, 2009
  16. Pereira CSM, Silva VMTM, Rodrigues AE, Green Chem., 13, 2658, 2011
  17. Tanaka K, Yoshikawa R, Ying C, Kita H, Okamoto K, Chem. Eng. Sci., 57(9), 1577, 2002
  18. Flick EW, Industrial Solvents Handbook, New Jersey, Noyes Data Corporation (1985).
  19. Bennett JS, Charles KL, Miner MR, Heuberger CF, Spina EJ, Bartels MF, Foreman T, Green Chem., 11, 166, 2009
  20. Lilja J, Aumo J, Salmi T, Murzin DY, Maki-Arvela P, Sundell M, Ekman K, Peltonen R, Vainio H, Appl. Catal. A: Gen., 228(1-2), 253, 2002
  21. Wasewar K, Patidar S, Agarwal VK, Desalination, 243(1-3), 305, 2009
  22. Hasegawa S, Azuma M, Takahashi K, J. Chem. Technol. Biotechnol., 83(11), 1503, 2008
  23. Zhihong H, Jing G, Tiantao Z, Weijie L, Liya Z, Ying H, 3rd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2009, 1 (2009).
  24. Sun J, Jiang Y, Zhou L, Gao J, Biocatal. Biotransform., 28, 279, 2010
  25. Koutinas M, Yiangou C, Osorio NM, Ioannou K, Canet A, Valero F, Ferreira-Dias S, Bioresour. Technol., 247, 496, 2018
  26. Asthana N, Kolah A, Vu DT, Lira CT, Miller DJ, Org. Process Res. Dev., 9, 599, 2005
  27. Gao J, Zhao XM, Zhou LY, Huang ZH, Chem. Eng. Res. Des., 85(A4), 525, 2007
  28. Delgado P, Sanz MT, Beltran S, Nunez LA, Chem. Eng. J., 165(2), 693, 2010
  29. Nigiz FU, Hilmioglu ND, React. Kinet. Mech. Catal., 118, 557, 2016
  30. Pal R, Sarkar T, Khasnobis S, Arkivoc, 2012, 570, 2012
  31. Dijs IJ, van Ochten HLF, van der Heijden AJM, Geus JW, Jenneskens LW, Appl. Catal. A: Gen., 241(1-2), 185, 2003
  32. Sampath G, Kannan S, Catal. Commun., 37, 41, 2013
  33. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH, Anal. Chim. Acta, 766, 61, 2013
  34. Loow YL, New EK, Yang GH, Ang LY, Foo YW, Wu TY, Cellulose, 24, 3591, 2017
  35. Aroso IM, Paiva A, Reis RL, Duarte ARC, J. Mol. Liq., 241, 654, 2017
  36. Shahbaz K, Mjalli FS, Hashim MA, Al Nashef IM, J. Appl. Sci., 10, 3349, 2010
  37. Wen Q, Chen JX, Tang YL, Wang J, Yang Z, Chemosphere, 132, 63, 2015
  38. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD, Green Chem., 13, 82, 2011
  39. D’Agostino C, Harris RC, Abbott AP, Gladden LF, Mantle MD, Phys. Chem. Chem. Phys., 13, 21383, 2011
  40. Garcia G, Aparicio S, Ullah R, Atilhan M, Energy Fuels, 29(4), 2616, 2015
  41. Hayyan A, Hashim MA, Mjalli FS, Hayyan M, AlNashef IM, Chem. Eng. Sci., 92, 81, 2013
  42. Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY, ACS Sustain. Chem. Eng., 3, 2746, 2015
  43. Longo LS. Craveiro MV, J. Braz. Chem. Soc., 29, 1999, 2018
  44. Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionisio M, Barreiros S, Reis RL, Duarte ARC, Paiva A, J. Mol. Liq., 215, 534, 2016
  45. Marcus Y, in Deep Eutectic Solvents, Springer International Publishing, 45 (2019).
  46. Hayyan A, Mjalli FS, AlNashef IM, Al-Wahaibi T, Al-Wahaibi YM, Hashim MA, Thermochim. Acta, 541, 70, 2012
  47. Lee YR, Lee YJ, Ma W, Row KH, Korean J. Chem. Eng., 33(8), 2337, 2016
  48. Taysun MB, Sert E, Atalay FS, J. Chem. Eng. Data, 62(4), 1173, 2017
  49. Williamson ST, Shahbaz K, Mjalli FS, AlNashef IM, Farid MM, Renew. Energy, 114, 480, 2017
  50. Cao J, Qi B, Liu J, Shang Y, Liu H, Wang W, Lv J, Chen Z, Zhang H, Zhou X, RSC Adv., 6, 21612, 2016
  51. Zuo M, Le K, Feng Y, Xiong C, Li Z, Zeng X, Tang X, Sun Y, Lin L, Ind. Crops Prod., 112, 18, 2018
  52. Hu Y, Li N, Li G, Wang A, Cong Y, Wang X, Zhang T, Green Chem., 19, 1663, 2017
  53. Pan Y, Alam MA, Wang ZM, Wu JC, Zhang Y, Yuan ZH, Bioresour. Technol., 220, 543, 2016
  54. Zhang X, Zhao Y, Xu S, Yang Y, Liu J, Wei Y, Yang Q, Nat. Commun., 5, 1, 2014
  55. Azizi N, Dezfooli S, Environ. Chem. Lett., 14, 201, 2016
  56. Dai DY, Wang L, Chen Q, He MY, J. Chem. Res., 38, 183, 2014
  57. Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramon DJ, Eur. J. Org. Chem., 2016, 612, 2016
  58. Singh BS, Lobo HR, Pinjari DV, Jarag KJ, Pandit AB, Shankarling GS, Ultrason. Sonochem., 20, 287, 2013
  59. Gorke JT, Srienc F, Kazlauskas RJ, Pharmaceuticals, Therapeutics, and Biotechnology, ACS Publications, 169 (2010).
  60. Durand E, Lecomte J, Barea B, Piombo G, Dubreucq E, Villeneuve P, Process Biochem., 47(12), 2081, 2012
  61. Stefanovic R, Ludwig M, Webber GB, Atkin R, Page AJ, Phys. Chem. Chem. Phys., 19, 3297, 2017
  62. Unlu AE, Prasad B, Anavekar K, Bubenheim P, Liese A, Prep. Biochem. Biotechnol., 47, 918, 2017
  63. Bailey JE, Ollis DF, Biochemical Engineering Fundamentals, New York, McGraw Hill College (1986).
  64. Fogler HS, Elements of Chemical Reaction Engineering, Prentice Hall (2004).
  65. Takagaki A, Catal. Sci. Technol., 6, 791, 2016
  66. Sigma Aldrich, Webpage, (2019). at .
  67. Duan G, Ching CB, Lim E, Ang CH, Biotechnol. Lett., 19(11), 1051, 1997
  68. Perry RH, Green DW, Perry’s Chemical Engineers’ Handbook, McGraw Hill Education (2007).
  69. Yu B, Bansal DG, Qu J, Sun X, Luo H, Dai S, Blau PJ, Bunting BG, Mordukhovich G, Smolenski DJ, Wear, 289, 58, 2012
  70. Mapless RE, Petroleum refinery process economics, Oklahoma, PennWell Corporation (2000).
  71. Dean JA, Lange’s Handbook of Chemistry, 15th ed. (1999).
  72. Simion AI, Grigoras CG, Bardasu LE, Dabija A, Food Environ. Saf., 11, 49, 2012
  73. Doran PM, Bioprocess engineering principles, Elsevier Science Limited (1995).
  74. Delgado P, Sanz MT, Beltran S, Chem. Eng. J., 126(2-3), 111, 2007
  75. Zhang Y, Ma L, Yang JC, React. Funct. Polym., 61(1), 101, 2004
  76. Aranda DAG, Santos RTP, Tapanes NCO, Ramos ALD, Antunes OAC, Catal. Lett., 122(1-2), 20, 2008
  77. Roman FF, Ribeiro AE, Queiroz A, Lenzi GG, Chaves ES, Brito P, Fuel, 239, 1231, 2019
  78. Fan G, Liao C, Fang T, Luo S, Song G, Carbohydr. Polym., 112, 203, 2014
  79. Frija LMT, Afonso CAM, Tetrahedron, 68, 7414, 2012
  80. Kumar A, Dixit M, Singh SP, Raghunandan R, Maulik PR, Goel A, Tetrahedron Lett., 50, 4335, 2009