Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 1-10, 2020
Effect of surfactant on wetting due to fouling in membrane distillation membrane: Application of response surface methodology (RSM) and artificial neural networks (ANN)
Membrane wetting is a bottleneck that limits the widespread application of membrane distillation (MD) technologies. However, the prediction of membrane wetting is difficult, due to its unpredictable behavior with the chemical species in feed waters. We used response surface methodology (RSM) and artificial neural networks (ANN) to predict the wetting phenomena in direct contact membrane distillation (DCMD) for the treatment of synthetic wastewater. Experiments were performed at various concentrations of NaCl, CaSO4, humic acid, alginate, and sodium dodecyl sulfate (SDS) to examine their effects on the wetting. The RSM and ANN models were established using the experimental data and statistically validated by the analysis of variance (ANOVA). The results showed that both RSM and ANN are able to predict the time of wetting and recovery for the range of input variables. The model predictions suggested that the concentration of NaCl and SDS has the greatest influence on the prediction parameters. When the concentration of SDS was less than 5mg/L, the concentration of NaCl was the dominant role in the wetting. On the other hand, the concentration of SDS was the predominant factor when the concentration of SDS was higher than 5mg/L.
[References]
  1. Swaminathan J, Lienhard JH, Desalination, 445, 51, 2018
  2. Khayet M, Adv. Colloid Interface Sci., 164, 56, 2011
  3. Tun CM, Fane AG, Matheickal JT, Sheikholeslami R, J. Membr. Sci., 257(1-2), 144, 2005
  4. Naidu G, Jeong S, Choi Y, Vigneswaran S, J. Membr. Sci., 524, 565, 2017
  5. Warsinger DM, Swarninathan J, Guillen-Burrieza E, Arafat HA, Lienhard JH, Desalination, 356, 294, 2015
  6. Rezaei M, Warsinger DM, Duke MC, Matsuura T, Samhaber WM, Water Res., 139, 329, 2018
  7. Wang ZX, Chen YML, Lin SH, J. Membr. Sci., 564, 275, 2018
  8. Wang Z, Lin S, Water Res., 112, 38, 2017
  9. Wang ZX, Chen YML, Zhang FY, Lin SH, Desalination, 450, 46, 2019
  10. Velioglu S, Han L, Chew JW, J. Membr. Sci., 551, 76, 2018
  11. Guillen-Burrieza E, Mavukkandy MO, Bilad MR, Arafat HA, J. Membr. Sci., 515, 163, 2016
  12. Thomas N, Mavukkandy MO, Loutatidou S, Arafat HA, Sep. Purif. Technol., 189, 108, 2017
  13. Alkhudhiri A, Darwish N, Hilal N, Desalination, 287, 2, 2012
  14. Hitsov I, Maere T, De Sitter K, Dotremont C, Nopens I, Sep. Purif. Technol., 142, 48, 2015
  15. Gil JD, Ruiz-Aguirre A, Roca L, Zaragoza G, Berenguel M, Desalination, 445, 15, 2018
  16. Khayet M, Cojocaru C, Sep. Purif. Technol., 86, 171, 2012
  17. Baghel R, Upadhyaya S, Chaurasia S, Singh K, Kalla S, J. Clean Prod., 199, 900, 2018
  18. Cheng DJ, Gong W, Li N, Desalination, 394, 108, 2016
  19. Khalifa AE, Lawal DU, Desalination Water Treatment, 57, 28513, 2016
  20. Khayet M, Cojocaru C, Garcia-Payo C, Ind. Eng. Chem. Res., 46(17), 5673, 2007
  21. Ruiz-Aguirre A, Andres-Manas JA, Fernandez-Sevilla JM, Zaragoza G, Desalination, 419, 160, 2017
  22. He QF, Li PL, Geng HX, Zhang CY, Wang J, Chang HY, Desalination, 354, 68, 2014
  23. Aish AM, Zaqoot HA, Abdeljawad SM, Desalination, 367, 240, 2015
  24. Khayet M, Cojocaru C, Desalination, 308, 102, 2013
  25. Liu ZW, Liang FN, Liu YZ, Appl. Therm. Eng., 140, 95, 2018
  26. Cao WS, Liu Q, Wang YQ, Mujtaba IM, Comput. Chem. Eng., 84, 96, 2016
  27. Tavakolmoghadam M, Safavi M, Procedia Eng., 42, 106, 2012
  28. Sarkar B, Sengupta A, De S, DasGupta S, Sep. Purif. Technol., 65(3), 260, 2009
  29. Khayet M, Cojocaru C, Essalhi M, J. Membr. Sci., 368(1-2), 202, 2011
  30. Cojocaru C, Macoveanu M, Cretescu I, Colloids Surf. A: Physicochem. Eng. Asp., 384, 675, 2011
  31. Sadrzadeh M, Mohammadi T, Ivakpour J, Kasiri N, Chem. Eng. J., 144(3), 431, 2008
  32. Srisurichan S, Jiraratananon R, Fane AG, Desalination, 174(1), 63, 2005
  33. Zago GP, Penha FM, Seckler MM, Desalination, 457, 85, 2019