Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 2133-2142, 2019
Poly(phenylene sulfide)-graphite composites for bipolar plates with preferred morphological orientation
Bipolar plates in phosphoric acid fuel cells require inertness to phosphoric acid as well as excellent electrical, thermal, and mechanical properties. For this application, we prepared poly(phenylene sulfide) (PPS)-graphite composites with random or ordered graphite orientations by compression and extrusion-compression processes, respectively. Due to current limitations of extruding graphite-filled polymers, only moderately high graphite concentrations were used (up to 40wt%). The compressed composites contained graphite sheets in a planar orientation (parallel to the pressing direction) and exhibited highly anisotropic electrical and thermal conductivity, with much higher in-plane than through-plane components. In contrast, composites that were extruded prior to compression exhibited randomly oriented graphite due to shearing forces during extrusion and therefore displayed isotropic properties. Thus, their throughplane electrical and thermal conductivity was superior to those of the ordered composite, while the in-plane properties were inferior. Notably, the internal graphitic structure affected the electrical conductivity more than the thermal conductivity. The randomly oriented composite also exhibited superior flexural strength, although the thermal stability of the two composites was almost equal. This study offers insights into the structure-property relationship of PPS-graphite composites as well as the effect of the orientation of conductive two-dimensional fillers on anisotropic properties.
[References]
  1. Lee SH, Kakati N, Maiti J, Jee SH, Kalita DJ, Yoon YS, Thin Solid Films, 529, 374, 2013
  2. Sun H, Cooke K, Eitzinger G, Hamilton P, Pollet B, Thin Solid Films, 528, 199, 2013
  3. Cunningham BD, Baird DG, J. Power Sources, 168(2), 418, 2007
  4. Dhakate SR, Mathur RB, Kakati BK, Dhami TL, Int. J. Hydrog. Energy, 32(17), 4537, 2007
  5. Pachauri RK, Chauhan YK, Int. J. Elec. Power, 74, 49, 2016
  6. Gao C, Zhang S, Lin Y, Li F, Guan S, Jiang Z, Compos. Part B-Eng., 79, 124, 2015
  7. Ma H, Chu B, Hsiao BS, Eur. Polym. J., 87, 398, 2017
  8. Jung H, Yu S, Bae NS, Cho SM, Kim RH, Cho SH, et al., ACS Appl. Mater. Interfaces, 7, 15256, 2015
  9. Lee MH, Kim HY, Oh SM, Kim BC, Bang D, Han JT, Woo JS, Int. J. Hydrog. Energy, 43(48), 21918, 2018
  10. Kim NH, Kuila T, Kim KM, Nahm SH, Lee JH, Polym. Test, 31, 537, 2012
  11. Park M, Park JH, Yang BJ, Cho J, Kim SY, Jung I, Compos. Pt. A-Appl. Sci. Manuf., 109, 124, 2018
  12. Khandelwal M, Mench MM, J. Power Sources, 161(2), 1106, 2006
  13. Suherman H, Sulong AB, Sahari J, Ceram. Int., 39, 1277, 2013
  14. Choi H, Woo JS, Han JT, Park SY, Nanotechnology, 28, 465706, 2017
  15. Ajayan PM, Stephan O, Colliex C, Trauth D, Science, 265(5176), 1212, 1994
  16. Gubler U, Raunhardt M, Stump A, Thin Solid Films, 515(4), 1737, 2006
  17. Bauhofer W, Kovacs JZ, Compos. Sci. Technol., 69, 1486, 2009
  18. Karsli NG, Yesil S, Aytac A, Compos. Part B-Eng., 63, 154, 2014
  19. Russello M, Diamanti EK, Catalanotti G, Ohlsson F, Hawkins SC, Falzon BG, Compos. Struct., 206, 272, 2018
  20. Zakaria MY, Sulong AB, Sahari J, Suherman H, Compos. Part B-Eng., 83, 75, 2015
  21. Zhang R, Dowden A, Deng H, Baxendale M, Peijs T, Compos. Sci. Technol., 69, 1499, 2009
  22. Ghasemi R, Elmquist L, Wear, 320, 120, 2014
  23. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247, 2002
  24. Thostenson ET, Chou TW, J. Phys. D-Appl. Phys., 35, L77, 2002
  25. Derieth T, Bandlamudi G, Beckhaus P, Kreuz C, Mahlendorf F, Heinzel A, J. New Mater. Electrochem. Syst., 11, 21, 2008
  26. Mathur RB, Dhakate SR, Gupta DK, Dhami TL, Aggarwal RK, J. Mater. Process. Technol., 203, 184, 2008
  27. Guo JX, Liu YJ, Prada-Silvy R, Tan YQ, Azad S, Krause B, Potschke P, Grady BP, J. Polym. Sci. B: Polym. Phys., 52(1), 73, 2014
  28. Xing J, Ni QQ, Deng B, Liu Q, Compos. Sci. Technol., 134, 184, 2016
  29. Ameli A, Jung PU, Park CB, Compos. Sci. Technol., 76, 37, 2013
  30. Jia Y, He H, Geng Y, Huang B, Peng X, Compos. Sci. Technol., 145, 55, 2017
  31. Karimi M, Ghajar R, Montazeri A, Compos. Struct., 201, 528, 2018
  32. Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L, Compos. Sci. Technol., 109, 25, 2015
  33. Antunes RA, de Oliveira MCL, Ett G, Ett V, J. Power Sources, 196(6), 2945, 2011
  34. San FGB, Tekin G, Int. J. Energy Res., 37(4), 283, 2013
  35. Xiao M, Lu Y, Wang SJ, Zhao YF, Meng YZ, J. Power Sources, 160(1), 165, 2006
  36. Lee HS, Kim HJ, Kim SG, Ahn SH, J. Mater. Process. Technol., 187, 425, 2007
  37. Dweiri R, Sahari J, J. Power Sources, 171(2), 424, 2007