Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 2125-2132, 2019
Enhanced proton conductivity of sulfonated poly(ether ether ketone) membranes at elevated temperature by incorporating (3-aminopropyl)triethoxysilane-grafted graphene oxide
Making inexpensive proton exchange membrane with high proton conductivity for the proton exchange membrane fuel cell (PEMFC) is still a challenging problem. Graphene oxide (GO) nanoparticles grafted with (3-aminopropyl) triethoxy silane (APTES) were prepared and then incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix by solution casting to make the composite proton exchange membrane. The obtained nanoparticles and composite membranes were characterized by XRD, FT-IR, Raman, TGA, SEM, and UTM. GO treated with the silane coupling agent improved the dispersion stability and compatibility of GO in SPEEK, which decreased the agglomeration of GO nanoparticles in the SPEEK membrane. The prepared nanocomposite membranes exhibited better water retention properties and proton conductivity. The proton conductivity of the SPEEK membrane with 2 wt% amine functionalized GO (AGO) reached 11.32 mS/cm at 120 °C, which was 2.45-times higher than that of the pristine SPEEK membrane. The reason was that AGO nanoparticles disperse uniformly in the SPEEK membranes, which provides new channels for proton transfer. The potential application of this composite membrane in the PEMFC was indicated.
[References]
  1. Yi BL, Battery Industry, 8, 16, 2003
  2. Xing DM, Du XZ, Yu JR, Power Technol., 25, 171, 2001
  3. Vinothkannan M, Kim AR, Kumar GG, RSC Adv., 8, 7494, 2018
  4. Zarrin H, Higgins D, Yu J, Am. Chem. Soc., 115, 20774, 2011
  5. Zhang B, Cao Y, Jiang ST, Li Z, He GW, Wu H, J. Membr. Sci., 518, 243, 2016
  6. Kumar R, Xu C, Scott K, RSC Adv., 2, 8777, 2012
  7. Kang JS, Ghil LJ, Kim YS, Colloids Surf. A: Physicochem. Eng. Asp., 313, 207, 2008
  8. Gao ST, Xu HL, Fang Z, Ouadah A, Chen H, Chen X, Shi LB, Ma B, Jing CJ, Zhu CJ, Electrochim. Acta, 283, 428, 2018
  9. He Y, Tong CY, Geng L, Liu LD, Lu C, J. Membr. Sci., 458, 36, 2014
  10. Cao L, Sun QQ, Gao YH, Liu LT, Shi HF, Electrochim. Acta, 158, 24, 2015
  11. Pandey RP, Thakur AK, Shahi VK, ACS Appl. Mater. Interfaces, 6(19), 16993, 2014
  12. Chen RM, Xu FZ, Fu K, Zhou JL, Shi Q, Xue C, Lyu YC, Guo BK, Li G, Mater. Res. Bull., 103, 142, 2018
  13. Zhao YC, Fu YQ, He Y, RSC Adv., 5(113), 10, 2015
  14. Miao S, Zhang H, Li X, Int. J. Hydrog. Energy, 41(1), 331, 2015
  15. Zhao YX, Fu YQ, Hu B, Lu CL, Solid State Ion., 294, 43, 2016
  16. Miao S, Zhang H, Li X, Int. J. Hydrog. Energy, 41(1), 331, 2015
  17. Sun YY, Qu SG, Li JL, Chem. Ind. Eng. Progress, 35(09), 2850, 2016
  18. Salarizadeh P, Javanbakht M, Pourmahdian S, RSC Adv., 7(14), 8303, 2017
  19. Salarizadeh P, Javanbakht M, Pourmandian S, Beydaghi H, Chem. Eng. J., 299, 320, 2016
  20. Salarizadeh P, Javanbakht M, Pourmahdian S, Solid State Ion., 281, 12, 015
  21. Liu Z, Duan X, Qian G, Nanotechnology, 24(4), 045609, 2013
  22. Gao ST, Xu HL, Fang Z, Ouadah A, Chen H, Chen X, Shi LB, Ma B, Jing CJ, Zhu CJ, Electrochim. Acta, 283, 428, 2018
  23. Jiang Y, Hao J, Hou M, Sustainable Energy Fuels, 10, 1039, 2017
  24. Xue YH, Fu RQ, Wu CM, Lee JY, Xu TW, J. Membr. Sci., 350(1-2), 148, 2010
  25. Mishra AK, Kim NH, Jung D, Lee JH, J. Membr. Sci., 458, 128, 2014
  26. Jiang T, Kuila T, Kim NH, Compos. Sci. Technol., 79(5), 115, 2013
  27. Feng K, Tang B, Wu P, J. Mater. Chem. A, 2(38), 16083, 2014
  28. Salarizadeh P, Maryam SAH, Bagheri A, Electrochim. Acta, 295, 875, 2019
  29. Salarizadeh P, Javanbakht M, Pourmandian S, Bagheri A, Beydaghi H, Enhessari M, J. Colloid Interface Sci., 472, 135, 2016
  30. Mecheri B, D'Epifanio A, Traversa E, Licoccia S, J. Power Sources, 178(2), 554, 2008
  31. Rhee CH, Kim HK, Chang H, Chem. Mater., 17(7), 1691, 2005
  32. Salarizadeh P, Bagheri A, Beydaghi H, Hooshyari K, Int. J. Energy Res., 43(9), 4840, 2019
  33. Salarizadeh P, Javanbakht M, Pourmahdian S, Hazer MSA, Hooshyari K, Askari MB, Int. J. Hydrog. Energy, 44(5), 3099, 2019
  34. Feng K, Tang B, Wu P, ACS Appl. Mater. Interfaces, 5(4), 1481, 2013
  35. Pandey RP, Shukla G, Manohar M, Adv. Colloid Interface Sci., 240, 15, 2017
  36. Marcano DC, Kosynkin DV, Berlin JM, ACS Nano., 4(8), 4806, 2010
  37. Guan K, Liang F, Zhu H, ACS Appl. Mater. Interfaces, 10, 13903, 2018
  38. Rattana T, Chaiyakun S, Witit-anun N, Procedia Eng., 32(7), 759 (2012).
  39. Dai W, Shen Y, Li Z, J. Mater. Chem. A, 2(31), 12423, 2014
  40. Farooqui UR, Ahmad AL, Hamid NA, Renew. Sust. Energ. Rev., 82, 714, 2018
  41. Shukla G, Shahi VK, Desalination, 451, 200, 2019
  42. Jiang ZQ, Zhao XS, Manthiram A, Int. J. Hydrog. Energy, 38(14), 5875, 2013
  43. Kumar R, Mamlouk M, Scott K, RCS Adv., 4(2), 617, 2013
  44. Pandey RP, Shahi VK, J. Power Sources, 299, 104, 2015
  45. Askari MB, Beheshti-Marnani A, Seifi M, Rozati SM, Salarizadeh P, J. Colloid Interface Sci., 537, 186, 2019
  46. Jiang Z, Shi Y, Jiang ZJ, J. Mater. Chem. A, 2(18), 6494, 2014
  47. Lee C, Wei X, Kysar JW, Science, 321(5887), 385, 2008
  48. Balandin AA, Ghosh S, Bao W, Nano Lett., 8(3), 902, 2008
  49. Hu S, Lozada-Hidalgo M, Wang FC, Mishchenko A, Schedin F, Nair RR, Hill EW, Boukhvalov DW, Katsnelson MI, Dryfe RAW, Grigorieva IV, Wu HA, Geim AK, Nature, 516(7530), 227, 2014
  50. Wang JF, Jin XX, Li CH, Wang WJ, Wu H, Guo SY, Chem. Eng. J., 370, 831, 2019
  51. He Y, Wang J, Zhang H, J. Mater. Chem. A, 2(25), 9548, 2014
  52. Chiong SJ, Goh PS, Ismail AF, J. Natural Gas Sci. Eng., 42, 190, 2017
  53. Feng MN, Huang YM, Wei MQ, Liu XB, Int. J. Hydrog. Energy, 43(24), 11214, 2018
  54. Rehman W, Liaqat K, Fazil S, J. Polymer Res., 26, 3, 2019
  55. Qu SG, Li MH, Zhang CC, Polymers, 11(1), 1, 2019
  56. Beydaghi H, Javanbakht M, Ind. Eng. Chem. Res., 54(28), 7028, 2015
  57. Reyes-Rodriguez JL, Escorihuela J, Garcia-Bernabe A, RSC Adv., 7(84), 53481, 2017