Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 2118-2124, 2019
Controlling the recombination of electron-hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties
ZnO nanorods were prepared through a sol-gel process by adding various amounts of water at low temperature and atmospheric pressure conditions for application as a photocatalyst. The 1-D ZnO nanostructures can overcome fast recombination of photogenerated electrons and holes that inhibits photocatalytic efficiency. X-ray diffractometer and transmission electron microscopy measurements confirmed that the (002)/(100) intensity ratio increased from 0.83 to 1.34 and the morphology of the ZnO nanoparticles was changed from a spherical shape to nanorods with the addition of water. UV-vis spectroscopy showed a red shift from 360 nm to 371 nm, which indicates a decrease of the band gap energy. PL measurements of the ZnO nanorods showed a 103 times improvement of the NBE/DLE intensity ratio compared to the ZnO nanospheres. When the photocatalytic efficiency of the ZnO nanoparticles was estimated for the degradation of methylene blue dye under irradiation of UV light, the photocatalytic kinetic constant increased from 0.067 min-1 to 0.481min-1. As a result, longer ZnO nanorods showed better photocatalytic performance.
[References]
  1. Wang J, Chen R, Xia Y, Wang G, Zhao H, Xiang L, Komarneni S, Ceram. Int., 43, 1870, 2017
  2. Mishra J, Jha M, Kaur N, Ganguli AK, Mater. Res. Bull., 102, 311, 2018
  3. Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211, 2011
  4. Chang CJ, Hsu MH, Weng YC, Tsay CY, Lin CK, Thin Solid Films, 528, 167, 2013
  5. Di TM, Zhu BC, Zhang J, Cheng B, Yu JG, Appl. Surf. Sci., 389, 775, 2016
  6. Mao LQ, Liu H, Liu S, Ba QQ, Wang H, Gao L, Li XY, Huang CP, Chen W, Mater. Res. Bull., 93, 9, 2017
  7. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW, J. Environ. Manage., 198, 78, 2017
  8. Singh R, Verma K, Patyal A, Sharma I, Barman PB, Sharma D, Solid State Sci., 89, 1, 2019
  9. Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32(3), 424, 2015
  10. Weng B, Yang MQ, Zhang N, Xu YJ, J. Mater. Chem. A, 2, 9380, 2014
  11. Raji R, Gopchandran KG, J. Phys. Chem. Solids, 113, 39, 2018
  12. Huang N, Shu J, Wang Z, Chen M, Ren C, Zhang W, J. Alloy. Compd., 648, 919, 2015
  13. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R, Sci. Rep., 4, 4596, 2014
  14. Liu Z, Zhao ZG, Miyauchi M, J. Phys. Chem. C, 113, 17132, 2009
  15. Kato S, Hirano Y, Iwata M, Sano T, Takeuchi K, Matsuzawa S, Appl. Catal. B: Environ., 57(2), 109, 2005
  16. Zhang J, Sun L, Pan H, Liao C, Yan C, New J. Chem., 26, 33, 2002
  17. Gao PX, Wang ZL, J. Phys. Chem. B, 108(23), 7534, 2004
  18. Wu JJ, Liu SC, Adv. Mater., 14(3), 215, 2002
  19. Liu R, Vertegel AA, Bohannan EW, Sorenson TA, Switzer JA, Chem. Mater., 13, 508, 2001
  20. Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Ren F, Fleming PH, Appl. Phys. Lett., 81, 3046, 2002
  21. Cheng-Liang H, Shoou-Jinn C, Hui-Chuan H, Yan-Ru L, Chorng-Jye H, Yung-Kuan T, Chen I, IEEE T. Nanotechnology, 4, 649, 2005
  22. Yan S, Wan L, Li Z, Zou Z, Chem. Commun., 47, 5632, 2011
  23. Jijun Q, Xiaomin L, Weizhen H, Park SJ, Kim HK, Han YH, Lee JH, Kim YD, Nanotechnology, 20, 155603, 2009
  24. Banerjee P, Chakrabarti S, Maitra S, Dutta BK, Ultrason. Sonochem., 19, 85, 2012
  25. Jeong Y, Kang JY, Kim I, Jeong H, Park JK, Park JH, Jung JC, Korean J. Chem. Eng., 33(1), 114, 2016
  26. Cheng B, Shi WS, Russell-Tanner JM, Zhang L, Samulski ET, Inorg. Chem., 45(3), 1208, 2006
  27. Jung HJ, Lee S, Choi HC, Choi MY, Solid State Sci., 21, 26, 2013
  28. Wang HH, Xie CS, Zeng DW, J. Cryst. Growth, 277(1-4), 372, 2005
  29. Chen Y, Zhao H, Liu B, Yang HQ, Appl. Catal. B: Environ., 163, 189, 2015
  30. Frederik CK, Yi T, Ralf T, Jens WA, Nanotechnology, 19, 424013, 2008
  31. Boucle J, Snaith HJ, Greenham NC, J. Phys. Chem. C, 114, 3664, 2010
  32. Hu JQ, Li Q, Wong NB, Lee CS, Lee ST, Chem. Mater., 14, 1216, 2002
  33. Kundu S, Sain S, Satpati B, Bhattacharyya SR, Pradhan SK, RSC Adv., 5, 23101, 2015
  34. Mclaren A, Valdes-Solis T, Li GQ, Tsang SC, J. Am. Chem. Soc., 131(35), 12540, 2009
  35. Colak H, Karakose E, Kartopu G, J. Mater. Sci-Mater. El., 29, 11964, 2018
  36. Lin YH, Wang DJ, Zhao QD, Yang M, Zhang QL, J. Phys. Chem. B, 108(10), 3202, 2004
  37. Seow ZLS, Wong ASW, Thavasi V, Jose R, Ramakrishna S, Ho GW, Nanotechnology, 20, 045604, 2008
  38. Mohajerani MS, Lak A, Simchi A, J. Alloy. Compd., 485, 616, 2009
  39. Shang TM, Sun JH, Zhou QF, Guan MY, Cryst. Res. Technol., 42, 1002, 2007
  40. Yang L, May PW, Yin L, Scott TB, Nanotechnology, 18, 215602, 2007
  41. Sun JC, Bian JM, Liang HW, Zhao JZ, Hu LZ, Zhao ZW, Liu WF, Du GT, Appl. Surf. Sci., 253(11), 5161, 2007
  42. Liu Y, Yan X, Kang Z, Li Y, Shen Y, Sun Y, Wang L, Zhang Y, Sci. Rep., 6, 29907, 2016
  43. Choi K, Kang T, Oh SG, Mater. Lett., 75, 240, 2012
  44. Li QW, Bian JM, Sun JC, Wang JW, Luo YM, Sun KT, Yu DQ, Appl. Surf. Sci., 256(6), 1698, 2010
  45. Gupta J, Barick KC, Bahadur D, J. Alloy. Compd., 509, 6725, 2011
  46. Rouhi J, Alimanesh M, Dalvand R, Ooi CHR, Mahmud S, Mahmood MR, Ceram. Int., 40, 11193, 2014
  47. Vanalakar SA, Mali SS, Suryawanshi MP, Tarwal NL, Jadhav PR, et al., Opt. Mater., 37, 766, 2014
  48. Ong CB, Ng LY, Mohammad AW, Renew. Sust. Energ. Rev., 81, 536, 2018
  49. He G, Huang B, Lin Z, Yang W, He Q, Li L, Crystals, 8, 152, 2018
  50. Chen X, Wu Z, Liu D, Gao Z, Nanoscale Res. Lett., 12, 143, 2017
  51. Yang LY, Dong SY, Sun JH, Feng JL, Wu QH, Sun SP, J. Hazard. Mater., 179(1-3), 438, 2010
  52. Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM, Inorg. Chem., 46(17), 6980, 2007
  53. Leelavathi A, Madras G, Ravishankar N, Phys. Chem. Chem. Phys., 15, 10795, 2013