Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 2110-2117, 2019
Green and low-cost preparation of CIGSe thin film by a nanocrystals ink based spin-coating method
An “ink” solution based process, using spin-coating technique, followed by annealing in selenium environment with different temperature programs was utilized to prepare CIGSe thin films. Herein, the CuIn0.7Ga0.3Se2 nanocrystals were synthesized using ethanol - a “green” solvent. Three different solvents: 2-propanol, 2-methoxyethanol, and their 2 : 1 mixture (v/v ratio), were investigated as a dispersion medium for the as-synthesized CIGSe nanocrystals to form a stable ink solution. The last one- a mixture of 2-propanol : 2-methoxyethanol=2 : 1 (v/v), was found to be the most suitable. Furthermore, the influences of various annealing modes on the CIGSe grain size and density in the resulting film were also studied. The as-prepared CIGSe thin film was around 1μm thick and possessed a tetragonal structure. A newly developed cheaper and “greener” non-vacuum process was applied successfully from the synthesis of nanocrystals to the formation of ink solution, and produced high quality thin films; this opens a new route to the cost-competitive commercialization of CIGSe thin film solar cells.
[References]
  1. Miller A, Mackinnon A, Weaire D, Solid State Phys., 36, 119, 1982
  2. Baier R, Ph.D. Thesis, Helmholtz-zentrums berlin-berichte (2012).
  3. https://www.pv-magazine.com/2019/01/21/solar-frontier-hits-newcis-cell-efficiency-record/.
  4. Chen GS, Yang JC, Chan YC, Yang LC, Huang W, Sol. Energy Mater. Sol. Cells, 93(8), 1351, 2009
  5. Ihlal A, Bouabid K, Soubane D, Nya M, Ait-Taleb-Ali O, Amira Y, Outzourhit A, Nouet G, Thin Solid Films, 515(15), 5852, 2007
  6. Garg V, Sengar BS, Sharma P, Kumar A, Aaryashree, Kumar S, Mukherjee S, Sol. Energy, 174, 35, 2018
  7. Ayachi B, Aviles T, Vilcot JP, Sion C, Miska P, Thin Solid Films, 660, 175, 2018
  8. Yu Z, Yan CP, Yan Y, Zhang YX, Huang T, Huang W, Li SS, Liu L, Zhang Y, Zhao Y, Appl. Surf. Sci., 258(22), 8527, 2012
  9. Contreras MA, Ramanathan K, AbuShama J, Hasoon F, Young DL, Egaas B, Noufi R, Prog. Photovolt: Res. Appl., 13, 209, 2005
  10. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R, Prog. Photovolt: Res. Appl., 16, 235, 2008
  11. Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W, Sol. Energy Mater. Sol. Cells, 119, 51, 2013
  12. Drici A, Mekhnache M, Bouraoui A, Kachouane A, Bernede JC, Amara A, Guerioune M, Mater. Chem. Phys., 110(1), 76, 2008
  13. Drobiazg T, Arzel L, Donmez A, Zabierowski P, Barreau N, Thin Solid Films, 582, 47, 2015
  14. Caballero R, Izquierdo-Roca V, Fontane X, Kaufmann CA, Alvarez-Garcia J, Eicke A, Calvo-Barrio L, Perez-Rodriguez A, Schock HW, Morante JR, Acta Mater., 58, 3468, 2010
  15. Singh M, Jiu JT, Sugahara T, Suganuma K, Thin Solid Films, 565, 11, 2014
  16. Lopez-Garcia J, Xie H, Izquierdo-Roca V, Sylla D, Fontane X, Blanes-Guardia M, Ramos F, Espindola-Rodriguez M, Lopez-Marino S, Saucedo E, Perez-Rodriguez A, Mater. Chem. Phys., 160, 237, 2015
  17. Wada T, Matsuo Y, Nomura S, Nakamura Y, Miyamura A, Chiba Y, Yamada A, Konagai M, Phys. Stat. Sol., 203, 2593, 2006
  18. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA, J. Am. Chem. Soc., 130(49), 16770, 2008
  19. Pscherer M, Gunthner M, Kaufmann CA, Rahm A, Motz G, Sol. Energy Mater. Sol. Cells, 132, 296, 2015
  20. Zhao D, Tian Q, Zhou Z, Wang G, Meng Y, Kou D, Zhou W, Pan D, Wu S, J. Mater. Chem. A, 3, 19263, 2015
  21. Park JJ, Lee JG, Kim DY, Lee JH, Yun JH, Gwak J, Eo YJ, Cho A, Swihart MT, Al-Deyab SS, Ahn S, Kim DH, Yoon SS, Acta Mater., 123, 44, 2017
  22. Park JJ, Lee JG, James SC, Al-Deyab SS, Ahn S, Yoon SS, Comput. Mater. Sci., 101, 66, 2015
  23. Choi HS, Choi E, Kim A, Yoon SP, Pyo SG, Phys. Status Solidi A-Appl. Res., 211, 1877, 2014
  24. Park GS, Park SJ, Jeong JS, Chu VB, Hwang YJ, Min BK, Thin Solid Films, 621, 70, 2017
  25. Bi JL, Yao LY, Ao JP, Gao SS, Sun GZ, He Q, Zhou ZG, Sun Y, Zhang Y, J. Power Sources, 326, 211, 2016
  26. Rampino S, Bronzoni M, Colace L, Frigeri P, Gombia E, Maragliano C, Mezzadri F, Nasi L, Seravalli L, Pattini F, Trevisi G, Motapothula M, Venkatesan T, Gilioli E, Sol. Energy Mater. Sol. Cells, 133, 82, 2015
  27. Kaelin M, Rudmann D, Kurdesau F, Zogg H, Meyer T, Tiwari AN, Thin Solid Films, 480-481, 486, 2005
  28. Lee D, Choi Y, Yong K, J. Cryst. Growth, 312(24), 3665, 2010
  29. Huang F, Yan AH, Zhao H, Li Z, Cai XP, Wang YH, Wu YC, Yin SB, Qiang YH, Cryst. Res. Technol., 49, 953, 2014
  30. Wang YC, Yen YT, Liu CH, Chen CH, Kuo WC, Juang JY, Lai CH, Chueh YL, Thin Solid Films, 546, 347, 2013
  31. Latha M, Devi RA, Velumani S, Opt. Mater., 79, 450, 2018
  32. Cha JH, Noh SJ, Jung DY, ChemSusChem, 8, 2407, 2015
  33. Lee JH, Chang J, Cha JH, Lee Y, Han JE, Jung DY, Choi EC, Hong B, Eur. J. Inorg. Chem., 5, 647, 2011
  34. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R, Prog. Photovolt: Res. Appl., 16, 235, 2008
  35. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M, Prog. Photovoltaics, 19, 894, 2011
  36. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R, Prog. Photovolt: Res. Appl., 16, 235, 2008
  37. Le TTT, Vu TV, Kim H, Jeong DS, Pejjai B, Truong NTN, Park C, Mater. Chem. Phys., 207, 522, 2018
  38. Tanino H, Deai H, Nakanishi H, Jpn. J. Appl. Phys. Suppl., 32-33, 436, 1993
  39. Witte W, Kniese R, Eicke A, Powalla M, Proceedings of the fourth IEEE World Conference on Photovoltaic Energy Conversion (WCPEC-4), Waikoloa, USA, 553 (2006).
  40. Biesinger MC, Lau LWM, Gerson AR, Smart RSC, Appl. Surf. Sci., 257(3), 887, 2010
  41. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR, NIST Standard Reference Database 20, Version 3.4 (web version) (http:/srdata.nist.gov/xps) (2003).
  42. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. (1992).
  43. Cahen D, Ireland PJ, Kazmerski LL, Thiel FA, J. Appl. Phys., 57, 4761, 1985
  44. Vegard L, Zeitschrift fur Physik, 5, 17, 1921
  45. Denton AR, Ashcroft NW, Phys. Rev. A., 43, 3161, 1991
  46. Abou-Ras D, Mukherji D, Kostorz G, Bremaud D, Kalin M, Rudmann D, Dobeli M, Tiwari AN, Mater. Res. Soc. Symp. Proc., 865, F8.1.1 (2005).
  47. Abou-Ras D, Kostorz G, Bremaud D, Kalin M, Kurdesau FV, Tiwari AN, Dobeli M, Thin Solid Films, 480, 433, 2005
  48. Krishnan R, Payzant EA, Acnyzki RK, Schoop U, Britt J, Noufi R, Anderson TJ, Proceedings of the 35th IEEE PVSC Honolulu, 1006 (2010).
  49. Eisenbarth T, Unold T, Caballero R, Kaufmann CA, Schock HW, J. Appl. Phys., 107, 034509, 2010
  50. Wada T, Kohara N, Nishiwaki S, Negami T, Thin Solid Films, 387(1-2), 118, 2001
  51. Caballero R, Kaufmann CA, Eisenbarth T, Grimm A, Lauermann I, Unold T, Klenk R, Schock HW, Appl. Phys. Lett., 96, 092104, 2010
  52. Caballero R, Nichterwitz M, Steigert A, Eicke A, Lauermann I, Schock HW, Kaufmann CA, Acta Mater., 63, 54, 2014