Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 2074-2084, 2019
Hydrodynamic modeling of the spiral-wound membrane module including the membrane curvature: reverse osmosis case study
This study presents an integrated analytical model for the hydrodynamic behavior of the spiral-wound membrane element considering the curvature of the flow feed and permeate channels. The new model introduces a set of closed-form expressions for the output parameters of the permeate flow rate, fluid recovery fraction, and the permeation flux, which can be a necessary tool for optimization and evaluation of the parameters involved in the problem. Accordingly, the results were set forth for a reverse osmosis water treatment SWM element. The difference in the output parameters for the solutions with flat and curved membranes was investigated, and the consequences of the common assumption of the flat-sheet membrane were examined mathematically. It was found that neglecting the membrane curvature implements a significant impact/error on the prediction of the permeate channel pressure and membrane width with maximum permeation rate, whereas its impacts on feed channel pressure and output parameters are insignificant, especially for the considered reverse osmosis case study. Also, the curvature effect on the solution can be magnified by three parameters of the membrane width: permeate channel permeability, and membrane resistance.
[References]
  1. Homaeigohar S, Elbahri M, NPG Asia Mater., 9(8), e427, 2017
  2. Elimelech M, Phillip WA, Science, 333(6043), 712, 2011
  3. Haidari AH, Heijman SGJ, van der Meer WGJ, Sep. Purif. Technol., 192, 441, 2018
  4. Abid HS, Johnson DJ, Hashaikeh R, Hilal N, Desalination, 420, 384, 2017
  5. Bae C, Park K, Heo H, Yang DR, Korean J. Chem. Eng., 34(3), 844, 2017
  6. Lin DJ, Ding ZW, Liu LY, Ma RY, Comput. Chem. Eng., 44, 20, 2012
  7. Taherinejad M, Derakhshan S, Yavarinasab A, Desalination, 411, 59, 2017
  8. Haidari AH, Heijman SGJ, van der Meer WGJ, Sep. Purif. Technol., 199, 9, 2018
  9. Radu AI, van Steen MSH, Vrouwenvelder JS, van Loosdrecht MCM, Picioreanu C, Water Res., 64, 160, 2014
  10. Hong SS, Ryoo W, Chun MS, Chung GY, Korean J. Chem. Eng., 32(7), 1249, 2015
  11. Gu BR, Adjiman CS, Xu XY, J. Membr. Sci., 527, 78, 2017
  12. Siddiqui A, Lehmann S, Haaksman V, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS, Water Res., 119, 304, 2017
  13. Koutsou CP, Karabelas AJ, Kostoglou M, Sep. Purif. Technol., 147, 90, 2015
  14. Kostoglou M, Karabelas AJ, Ind. Eng. Chem. Res., 48(22), 10025, 2009
  15. Kim DY, Gu B, Yang DR, Korean J. Chem. Eng., 30(9), 1691, 2013
  16. Kavianipour O, Ingram GD, Vuthaluru HB, J. Membr. Sci., 526, 156, 2017
  17. Li MH, Bui T, Chao S, Desalination, 397, 194, 2016
  18. Ranade VV, Kumar A, J. Membr. Sci., 271(1-2), 1, 2006
  19. Li YL, Tung KL, J. Membr. Sci., 319(1-2), 286, 2008
  20. Li YL, Tung KL, Lu MY, Huang SH, J. Membr. Sci., 329(1-2), 106, 2009
  21. Li YL, Tung KL, Chen YS, Hwang KJ, Desalination, 287, 200, 2012
  22. Wardeh S, Morvan HP, Desalination Water Treatment, 1(1-3), 277, 2009
  23. Tung KL, Teoh HC, Lee CW, Chen CH, Li YL, Lin YF, Chen CL, Huang MS, J. Membr. Sci., 495, 489, 2015
  24. Karabelas AJ, Kostoglou M, Koutsou CP, Desalination, 356, 165, 2015
  25. Taherinejad M, Gorman J, Sparrow E, Derakhshan S, J. Membr. Sci., 563, 2010, 2018
  26. Koutsou CP, Yiantsios SG, Karabelas AJ, J. Membr. Sci., 291(1-2), 53, 2007
  27. Sousa P, Soares A, Monteiro E, Rouboa A, Desalination, 349, 22, 2014
  28. Kostoglou M, Karabelas AJ, Desalination, 316, 91, 2013
  29. Minhas MB, Kim WS, Desalination Water Treatment, 54(9), 2343, 2014
  30. Mane PP, Park PK, Hyung H, Brown JC, Kim JH, J. Membr. Sci., 338(1-2), 119, 2009
  31. Boulahfa H, Belhamidi S, Elhannouni F, Taky M, El Fadil A, Elmidaoui A, J. Environ. Chem. Eng., 7(2), 102937, 2019