Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 1991-1999, 2019
Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement
Mn-Ce-Ti catalysts were prepared by different precursors (including manganese nitrate, manganese acetate, and manganese chloride) and used for selective catalytic reduction (SCR) of NO with ammonia. The relationships among the structure, physicochemical properties, and catalytic activity were explored by N2 adsorption/desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3- TPD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), scanning electron microprobe (SEM) and energy dispersive spectroscopy (EDS) techniques. The results show that the different Mn precursors play important roles in the catalytic activity. The Mn-Ce-Ti(N) catalyst synthesized by manganese nitrate precursor exhibits the best catalytic activity, while the Mn-Ce-Ti(C) and Mn-Ce-Ti(Cl) catalyst prepared by manganese acetate and manganese chloride, respectively, exhibit relatively low catalytic activity. The manganese nitrate precursor could promote the specific surface area and redox ability, enhance the amounts of Brønsted and Lewis acid sites, and enrich the surface active species such as Mn4+, Ce3+ and surface chemisorbed oxygen of the catalyst, all of which will contribute to the SCR performance. Moreover, the Mn-Ce-Ti(N) catalyst possesses highly dispersed and uniform surface active species, which will result in the optimal physicochemical properties and superior catalytic performance.
[References]
  1. Campisi S, Galloni MG, Bossola F, Gervasini A, Catal. Commun., 123, 79, 2019
  2. Zhang X, Wang J, Song Z, Zhao H, Xing Y, Zhao M, Zhao J, Ma ZA, Zhang P, Tsubaki N, Mol. Catal., 463, 1, 2019
  3. Guo RT, Sun X, Liu J, Pan WG, Li MY, Liu SM, Sun P, Liu SW, Appl. Catal. A: Gen., 558, 1, 2018
  4. Sun P, Huang SX, Guo RT, Li MY, Liu SM, Pan WG, Fu ZG, Liu SW, Sun X, Liu J, Appl. Surf. Sci., 447, 479, 2018
  5. Ma YG, Zhang DY, Sun HM, Wu JF, Liang P, Zhang HW, Ind. Eng. Chem. Res., 57(9), 3187, 2018
  6. Liu J, Guo RT, Li MY, Sun P, Liu SM, Pan WG, Liu SW, Sun X, Fuel, 223, 385, 2018
  7. Chen CM, Jia WB, Liu ST, Cao Y, J. Mater. Sci., 53(14), 10001, 2018
  8. Wang T, Liu HZ, Zhang XY, Guo YH, Zhang YS, Wang Y, Sun BM, Fuel Process. Technol., 158, 199, 2017
  9. Han S, Ye Q, Cheng S, Kang T, Dai H, Catal. Sci. Technol., 7, 703, 2017
  10. France LJ, Yang Q, Li W, Chen ZH, Guang JY, Guo DW, Wang LF, Li XH, Appl. Catal. B: Environ., 206, 203, 2017
  11. Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotis PG, J. Catal., 325, 145, 2015
  12. Qi GS, Yang RT, J. Catal., 217(2), 434, 2003
  13. Carja G, Kameshima Y, Okada K, Madhusoodana CD, Appl. Catal. B: Environ., 73(1-2), 60, 2007
  14. Qi GS, Yang RT, Chang R, Catal. Lett., 87(1-2), 67, 2003
  15. Fang D, Xie JL, Hu H, Yang H, He F, Fu ZB, Chem. Eng. J., 271, 23, 2015
  16. Hwang S, Jo SH, Kim J, Shin MC, Chun HH, Park H, Lee H, React. Kinet. Mech Catal., 117, 583, 2015
  17. Pena DA, Uphade BS, Smirniotis PG, J. Catal., 221(2), 421, 2004
  18. Xu W, Zhang G, Chen H, Zhang G, Han Y, Chang Y, Gong P, Chin. J. Catal., 39, 118, 2018
  19. Lykaki M, Pachatouridou E, Iliopoulou E, Carabineiro SAC, Konsolakis M, RSC Adv., 7, 6160, 2017
  20. Chen X, Carabineiro SAC, Bastos SST, Tavares PB, Orfao JJM, Pereira MFR, Figueiredo JL, Appl. Catal. A: Gen., 472, 101, 2014
  21. Carabineiro SAC, Bastos SST, Orfao JJM, Pereira MFR, Delgado JJ, Figueiredo JL, Catal. Lett., 134, 217, 2009
  22. Li Q, Li X, Li W, Zhong L, Zhang C, Fang QY, Chen G, Chem. Eng. J., 369, 26, 2019
  23. Kwon DW, Nam KB, Hong SC, Appl. Catal. A: Gen., 497, 160, 2015
  24. Xu L, Wang C, Chang H, Wu Q, Zhang T, Li J, Environ. Sci. Technol., 52, 7064, 2018
  25. Li J, Peng Y, Chang H, Li X, Crittenden JC, Hao J, Front. Environ. Sci. Eng., 10, 413, 2016
  26. Chen HF, Xia Y, Huang H, Gan YP, Tao XY, Liang C, Luo JM, Fang RY, Zhang J, Zhang WK, Liu XS, Chem. Eng. J., 330, 1195, 2017
  27. Song Z, Zhang Q, Ning P, Fan J, Duan Y, Liu X, Huang Z, J. Taiwan Inst. Chem. Eng., 65, 149, 2016
  28. Xu Q, Su R, Cao L, Li Y, Yang C, Luo Y, Street J, Jiao P, Cai L, RSC Adv., 7, 48785, 2017
  29. Jiang LJ, Liu QC, Ran GJ, Kong M, Ren S, Yang J, Li JL, Chem. Eng. J., 370, 810, 2019
  30. Wang N, Qian W, Chu W, Wei F, Catal. Sci. Technol., 6, 3594, 2016
  31. Zhan SH, Zhang H, Zhang Y, Shi Q, Li Y, Li XJ, Appl. Catal. B: Environ., 203, 199, 2017
  32. Wang XM, Li XY, Zhao QD, Sun WB, Tade M, Liu SM, Chem. Eng. J., 288, 216, 2016
  33. Mu W, Zhu J, Zhang S, Guo Y, Su L, Li X, Li Z, Catal. Sci. Technol., 6, 7532, 2016
  34. Kim YJ, Kwon HJ, Heo I, Nam IS, Cho BK, Choung JW, Cha MS, Yeo GK, Appl. Catal. B: Environ., 126, 9, 2012
  35. Huang J, Huang H, Liu L, Jiang H, Mol. Catal., 446, 49, 2018
  36. Shu Y, Sun H, Quan X, Chen S, J. Phys. Chem. C, 116, 25319, 2012
  37. Zhu L, Zeng Y, Zhang S, Deng J, Zhong Q, J. Environ. Sci., 54, 277, 2017
  38. Qu Z, Miao L, Wang H, Fu Q, Chem. Commun., 51, 956, 2015
  39. Zhang L, Zhang D, Zhang J, Cai S, Fang C, Huang L, Li H, Gao R, Shi L, Nanoscale, 5, 9821, 2013
  40. Zhao W, Zhong Q, Pan YX, Zhang R, Chem. Eng. J., 228, 815, 2013
  41. Wang X, Wu S, Zou W, Yu S, Gui K, Dong L, Chin. J. Catal., 37, 1314, 2016
  42. Shen BX, Ma HQ, He C, Zhang XP, Fuel Process. Technol., 119, 121, 2014
  43. Wang HQ, Cao S, Fang Z, Yu FX, Liu Y, Weng XL, Wu ZB, Appl. Surf. Sci., 330, 245, 2015
  44. Zhang P, Shao C, Li X, Zhang M, Zhang X, Sun Y, Liu Y, J. Hazard. Mater., 237-238, 331, 2012
  45. Zhang Y, Guo W, Wang L, Song M, Yang L, Shen K, Xu H, Zhou C, Chin. J. Catal., 36, 1701, 2015
  46. Yao WY, Liu Y, Wu ZB, Appl. Surf. Sci., 442, 156, 2018
  47. You XC, Sheng ZY, Yu DQ, Yang L, Xiao X, Wang S, Appl. Surf. Sci., 423, 845, 2017
  48. Shao YJ, Ren B, Jiang HM, Zhou BJ, Lv LP, Ren JZ, Dong LC, Li J, Liu ZF, J. Hazard. Mater., 333, 222, 2017
  49. Lan L, Li Q, Gu G, Zhang H, Liu B, J. Alloy. Compd., 644, 430, 2015