Issue
Korean Journal of Chemical Engineering,
Vol.36, No.12, 1971-1982, 2019
Oxygen transfer capacity of the copper component introduced into the defected-MgMnAlO4 spinel structure in CH4-CO2/air redox cycles
Oxygen carrier particles were fabricated by using defected-MgMnAlO4 as a support particle with crystal defects, and by the Cu2+ ions with a higher reduction potential substituted with Mg2+ ions, in order to use methanechemical looping combustion (CH4-CLC) reaction. The oxygen transfer capacities of the particles were compared when conducting redox reactions under H2/air or CH4-CO2/air systems. As a result, the oxygen transfer capacity increased as the amount of Cu ions added increased. In particular, in the CH4-CO2/air system, Cu0.75Mg0.25MnAlO4 particle showed an excellent oxygen transfer capacity of 7.62%. The XPS result confirms that the Cu2+ (also partially Mn3+ ions) in the Cu0.75Mg0.25MnAlO4 particle oxidize CH4, and then they are restored to their original state by receiving oxygen from the Al3+ and Mg2+ ions in the support. The oxygen vacancies in the lattice due to the Cu2+ could easily induce oxygen delivery, and the reversible oxygen loss recovery by re-oxidation in the air reactor could be achieved. This is the most important factor in increasing oxygen transfer capacity. Ultimately, in this study, oxygen defects in the crystal lattices induced during the reaction seem to have a positive effect on the CH4 combustion reaction.
[References]
  1. Sun S, Wang L, Liu X, Jin B, Wang D, Processes, 6, 1, 2018
  2. Cheng XM, Li KZ, Wang H, Zhu X, Wei YG, Li ZH, Zheng M, Tian D, Chem. Eng. J., 328, 382, 2017
  3. Marx K, Bertsch O, Proll T, Hofbauer H, Energy Procedia, 37, 635, 2013
  4. Villa R, Cristiani C, Groppi G, Lietti L, Forzatti P, Cornaro U, Rossini S, J. Mol. Catal. A-Chem., 204, 637, 2003
  5. Hossain MM, de Lasa HI, AIChE J., 53(7), 1817, 2007
  6. Kang S, Im Y, Park KS, Cho TW, Jeon J, Chung KI, Kang M, Electrochim. Acta, 209, 623, 2016
  7. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936, 2017
  8. Kwak BS, Park NK, Ryu HJ, Baek JI, Kang M, Appl. Therm. Eng., 128, 1273, 2018
  9. Linderholm C, Abad A, Mattisson T, Lyngfelt A, Int. J. Greenh. Gas Con., 2, 520, 2008
  10. Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G, ACS Catal., 7, 6493, 2017
  11. Kwak BS, Park NK, Ryu SO, Baek JI, Ryu HJ, Kang M, Chem. Eng. J., 309, 617, 2017
  12. Son N, Do JY, Park NK, Ryu SO, Kwak BS, Baek JI, Kim US, Ryu HJ, Lee D, Kang M, Int. J. Energy Res., 42(12), 3943, 2018
  13. Do JY, Lee JH, Park NK, Lee TJ, Lee ST, Kang M, Chem. Eng. J., 334, 1668, 2018
  14. Do JY, Son N, Park NK, Kwak BS, Baek JI, Ryu HJ, Kang M, Appl. Energy, 219, 138, 2018
  15. Ryu HJ, Lee SY, Park YC, Park MH, World Acad. Sci. Eng. Technol., 28, 169, 2007
  16. Zhu Y, Liu X, Jin S, Chen H, Lee W, Liu M, Chen Y, J. Mater. Chem. A., 7, 5875, 2019
  17. Singh K, Razmiooei F, Yu JS, J. Mater. Chem. A, 5, 20095, 2017
  18. Gribchenkova NA, Snorchkov KG, Kolmakov AG, Alikhanyan AS, Inorg. Mater., 54, 575, 2018
  19. Soomro KR, Ibupoto ZH, Sirajuddin B, Int. J. Food Prop., 20, 1359, 2017
  20. Schreyeck L, Wlosik A, Fuzellier H, J. Mater. Chem., 11, 483, 2001
  21. Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P, Chem. Eng. Sci., 60(3), 851, 2005
  22. Kogler M, Kock EM, Bielz T, Pfaller K, Klotzer B, Schmidmair D, Perfler L, Penner S, J. Phys. Chem. C., 118, 8435, 2014
  23. Sihaib Z, Puleo F, Pantaleo G, Parola VL, Valverde JL, Gil S, Liotta LF, Giroir-Fendler A, Catalysts, 9, 226, 2019
  24. Qiu L, Wang Y, Pang D, Ouyang F, Zhang C, Cao G, Catalysts, 6, 9, 2016
  25. Huo C, Ouyang J, Yang H, Sci. Rep., 4, 3682, 2014
  26. Qin W, Lin C, Wang J, Xiao X, Dong C, Wei L, Energies, 9, 1, 2016
  27. Kim KM, Kwak BS, Park NK, Lee TJ, Lee ST, Kang M, J. Ind. Eng. Chem., 46, 324, 2017
  28. Qian I, Yan Z, J. Nat. Gas Chem., 11, 151, 2002
  29. Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z, Catal. Sci. Technol., 5, 3166, 2015
  30. Scheffe JR, McDaniel AH, Allendorf MD, Weimer AW, Energy Environ. Sci., 6, 963, 2013
  31. Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371, 2004
  32. Cho P, Mattisson T, Lyngfelt A, Fuel, 83(9), 1215, 2004
  33. Wang JG, Zhang C, Jin D, Xie K, Wei B, J. Mater. Chem. A, 3, 13699, 2015
  34. Zhou PH, Deng LJ, Xie JL, Liang DF, Chen L, Zhao XQ, J. Magn. Magn. Mater., 292, 325, 2005
  35. Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P, Chem. Eng. Sci., 60(3), 851, 2005
  36. Poulston S, Parlett PM, Stone P, Bowker M, Surf. Interface Anal., 24, 811, 1996
  37. Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzalez-Elipe AR, J. Phys. Chem. B., 106, 6921, 2002
  38. Zhang JY, Wu ZL, Wang SG, Zhao CJ, Yang G, Appl. Phys. Lett., 102, 102404, 2013
  39. Luo Y, Wang X, Guo W, Rohwerder M, J. Electrochem. Soc., 162, 294, 2015
  40. Li XJ, Xin MY, Guo S, Cai TH, Du DF, Xing W, Zhao LM, Guo WY, Xue QZ, Yan ZF, Electrochim. Acta, 253, 302, 2017
  41. Ksepko E, Babinski P, Nalbandian L, Appl. Energy, 190, 1258, 2017
  42. Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang SCI, Shen Y, Tong Y, Sci. Rep., 3, 1021, 2013