Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1940-1947, 2019
Effect of emulsified polymer binders on the performance of activated carbon electrochemical double-layer capacitors
The electrochemical properties of two water-emulsified polymers, styrene-butadiene rubber, and polytetrafluoroethylene, on activated carbon electrochemical capacitors were systematically compared. All electrodes were fabricated with different ratios of styrene-butadiene rubber and polytetrafluoroethylene: 4 : 0, 3 : 1, 2 : 2, and 1 : 3. A good dispersion of styrene-butadiene rubber nanoparticles maintains mesopores in activated carbon, whereas an increase in polytetrafluoroethylene binder content in the electrodes reduces mesoporous surface area significantly due to the lump polytetrafluoroethylene structure coagulated by smashed particles in water. The relatively strong adhesion of the styrene- butadiene rubber binder also leads to better cyclability for extremely long cycles and the rate capability with various current densities at room temperature. At a high temperature of 60 oC, however, the electrodes containing polytetrafluoroethylene binder showed comparable high specific capacitance due to the high thermal stability of polytetrafluoroethylene.
[References]
  1. Cendrowski K, Kukulka W, Kedzierski T, Zhang S, Mijowska E, Nanomaterials, 8, 1, 2018
  2. Parulekar S, Holmukhe SSRM, Karandikar PB, Int. J. Eng. Tech., 7, 313, 2018
  3. Gao Y, Nanoscale Res. Lett., 12, 387, 2017
  4. Jiao Y, Qu C, Zhao B, Liang Z, Chang H, Kumar S, Zou R, Liu M, Walton KS, ACS Appl. Energy Mater., 2, 5029, 2019
  5. Abbas Q, Pajak D, Frackowiak E, Beguin F, Electrochim. Acta, 140, 132, 2014
  6. Tsay KC, Zhang L, Zhang JJ, Electrochim. Acta, 60, 428, 2012
  7. Paul S, Choi KS, Lee DJ, Sudhagar P, Kang YS, Electrochim. Acta, 78, 649, 2012
  8. Aslan M, Weingarth D, Jackel N, Atchison JS, Grobelsek I, Presser V, J. Power Sources, 266, 374, 2014
  9. Lia K, Maffei N, Entchev E, J. Solid State Electrochem., 18, 2535, 2014
  10. Eftekhari A, Li L, Yang Y, J. Power Sources, 347, 86, 2017
  11. Han Y, Dai L, Macromol. Chem. Phys., 220, 180035, 2019
  12. Wang Y, Ding Y, Guo X, Yu G, Nano Res., 12, 1978, 2019
  13. Jeschull F, Brandell D, Wohlfahrt-Mehrens M, Memm M, Energy Technol., 5, 2108, 2017
  14. Wang R, Feng L, Yang W, Zhang Y, Zhang Y, Bai W, Liu B, Zhang W, Chuan Y, Zheng Z, Guan H, Nanoscale Res. Lett., 12, 575, 2017
  15. Chauque S, Oliva FY, Camara OR, Torresi RM, J. Solid State Electrochem., 22, 3589, 2018
  16. Bai YC, Rakhi RB, Chen W, Alshareef HN, J. Power Sources, 233, 313, 2013
  17. Xu H, Gao B, Cao H, Chen X, Yu L, Wu K, Sun L, Peng X, Fu J, J. Nanomaterials, 2014, 1, 2014
  18. Saka C, J. Anal. Appl. Pyrolysis, 95, 21, 2012
  19. Wang CM, Wen CY, Chen YC, Chang JY, Ho CW, Kao KS, Shih WC, Chiu CM, Shen YA, in The 3rd International Conference on Industrial Application Engineering 2015 (ICIAE2015) (2015).
  20. Liao WC, Liao FS, Tsai CT, Yang YP, hina Steel Technical Report, 25, 36, 2012
  21. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G, Science, 334, 75, 2011
  22. Pan X, Ren G, Hoque MNF, Bayne S, Zhu K, Fan Z, Adv. Mater. Interfaces, 1, 140039, 2014
  23. Wu H, Lou Z, Yang H, Shen G, Nanoscale, 7, 1921, 2015
  24. Zhao P, Soin N, Prashanthi K, Chen J, Dong S, Zhou E, Zhu Z, Narasimulu AA, Montemagno CD, Yu L, Luo J, ACS Appl. Mater. Interfaces, 10, 5880, 2018
  25. Nicholson JW, The Chemistry of Polymers, Royal Society of Chemistry (2012).
  26. Conte M, Pinedo B, Igartua A, Tribol. Int., 74, 1, 2014