Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1839-1853, 2019
Metal organic frameworks (MOFs): Current trends and challenges in control and management of air quality
Coordination polymers (CPs) are a unique class of polymers characterized by a molecular structure consisting of repeating metal centers linked by organic ligands in an infinite array connected through coordination bonding. In the last two decades, research interest in CPs, such as metal organic frameworks (MOFs), has grown rapidly owing to their exclusive advantageous properties (e.g., exceptionally high surface area, chemical and thermal stability, molecular functionality, porosity, electron mobility, thermal conductivity, and mechanical strength). In this study, we started with a basic question: Why and how are coordination polymers special and how do they differ from other classes of polymers? Next, we explored the value of unique and innovative CPs in line with the advent of design and synthesis approaches. We focused on the current trends and challenges of CPs/MOFs for application in the control and management of air quality. The intent of this review is to motivate development of CPs/MOFs that can be ultimately applied towards more efficient and effective technology as remediating and managing of the air quality. Ultimately, this review will help us open a new paradigm to pursue the future progress in polymers and materials science that targets specific applications in environmental engineering.
[References]
  1. Lubchenco J, Science, 279(5350), 491, 1998
  2. Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O'Keeffe M, Suhh MP, Reedijkij J, CrystEngComm., 14, 3001, 2012
  3. Perreault F, De Faria AF, Elimelech M, Chem. Soc. Rev., 44, 5861, 2015
  4. Kumar P, Deep A, Kim KH, Brown RJC, Prog. Polym. Sci, 45, 102, 2015
  5. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK, Chem. Soc. Rev., 46, 3242, 2017
  6. www.indiaenviromentportal.org.in (b) www.indianenviroment.org.in, (c) WHO Guidelines (2016).
  7. Towards A Clean-Air Action Plan, Lessons from Delhi, Centre for Science and Environment, New Delhi (2017).
  8. Summary Report of India Air Purifier Market (2017-2023) - http://www.6wresearch.com/market-reports/india-air-purifier-market-2017-2023-forecast-by-segments-car-room-hepa-applications-cities-tier-1-2-3.html.
  9. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, Science, 341, 123044, 2013
  10. Klein RM, Bailar JC, Inorg. Chem., 2, 1187, 1963
  11. Hoskins BF, Robson R, J. Am. Chem. Soc., 111, 5962, 1989
  12. Batten SR, Neville SM, Turner DR, Coordination polymers: design, analysis and application, Royal Society of Chemistry (2008).
  13. Kitagawa S, Kondo M, Bull. Chem. Soc. Jpn., 71, 1739, 1998
  14. Janiak C, Vieth JK, New J. Chem., 34, 2366, 2010
  15. Zhang JP, Zhang YB, Lin JB, Chen XM, Chem. Rev., 112, 1001, 2011
  16. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM, Nature, 402, 276, 1999
  17. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M, Yaghi OM, Chem. Soc. Rev., 38, 1257, 2009
  18. Janiak C, Dalton Transactions, 2781-804 (2003).
  19. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR, Chem. Rev., 112, 724, 2011
  20. Cychosz KA, Matzger AJ, Langmuir, 26(22), 17198, 2010
  21. Uemura T, Yanai N, Kitagawa S, Chem. Soc. Rev., 38, 1228, 2009
  22. Kuppler RK, Timmons DJ, Fang QR, Li JR, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou HC, Coord. Chem. Rev., 253, 3042, 2009
  23. Khan NA, Hasan Z, Jhung SH, J. Hazard. Mater., 244, 444, 2013
  24. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R, Cryst. Eng. Mater., 70, 3, 2014
  25. Long JR, Yaghi OM, Chem. Soc. Rev., 38, 1213, 2009
  26. Yaghi OM, O'keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J, Nature, 423, 705, 2003
  27. Stock N, Biswas S, Chem. Rev., 112, 933, 2011
  28. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY, Chem. Soc. Rev., 43, 6011, 2014
  29. Cohen SM, Chem. Rev., 112, 970, 2011
  30. Li B, Wen HM, Zhou W, Chen B, J. Phys. Chem. Lett., 5, 3468, 2014
  31. Imaz I, Hernando J, Ruiz-Molina D, Maspoch D, Angew. Chem.-Int. Edit., 48, 2325, 2009
  32. Fujita M, Kwon YJ, Washizu S, Ogura K, J. Am. Chem. Soc., 116(3), 1151, 1994
  33. Yaghi OM, Li GM, Li HL, Nature, 378(6558), 703, 1995
  34. Cote AP, Benin AI, Ockwig NW, O'keeffe M, Matzger AJ, Yaghi OM, Science, 310, 1166, 2005
  35. Rowsell JL, Yaghi OM, Microporous Mesoporous Mater., 73(1-2), 3, 2004
  36. Rowsell JLC, Yaghi OM, J. Am. Chem. Soc., 128(4), 1304, 2006
  37. Halder GJ, Kepert CJ, Moubaraki B, Murray KB, Cashion JD, Science, 298, 1762, 2002
  38. Min KS, Suh MP, Chem. Eur. J., 7, 303, 2001
  39. Cai J, Zhou JS, Lin ML, J. Mater. Chem., 13, 1806, 2003
  40. Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J, Nature Mater., 2, 190, 2003
  41. Yifa C, Shenghan Z, Sijia C, Siqing L, Fan C, Shuai Y, Cheng X, Junwen Z, Xiao F, Xiaojie M, Bo W, Adv. Mater., 29, 160622, 2017
  42. Kumar P, Kim KH, Kwon EE, Szulejko JE, J. Mater. Chem. A, 4, 345, 2016
  43. Van Humbeck JF, McDonald TM, Jing XF, Wiers BM, Zhu GS, Long JR, J. Am. Chem. Soc., 136(6), 2432, 2014
  44. Rieth AJ, Tulchinsky Y, Dinca M, J. Am. Chem. Soc., 138(30), 9401, 2016
  45. Caskey SR, Wong-Foy AG, Matzger AJ, J. Am. Chem. Soc., 130(33), 10870, 2008
  46. Mason JA, Sumida K, Herm ZR, Krishna R, Long JR, Energy Environ. Sci., 4(8), 3030, 2011
  47. McDonald TM, D'Alessandro DM, Krishna R, Long JR, Chem. Sci., 2, 2022, 2011
  48. Xue DX, Cairns AJ, Belmabkhout Y, Wojtas L, Liu YL, Alkordi MH, Eddaoudi M, J. Am. Chem. Soc., 135(20), 7660, 2013
  49. Xue DX, Cairns AJ, Belmabkhout Y, Wojtas L, Liu Y, Alkordi MH, Eddaoudi M, Chem. Sci., 7, 6528, 2016
  50. Wang XL, Fan HL, Tian Z, He EY, Li Y, Ju SG, Appl. Surf. Sci., 289, 107, 2014
  51. Wang XL, Fan HL, Tian Z, He EY, Li Y, Shangguan J, Chem., 3, 822, 2017
  52. Abtab SMT, Alezi D, Bhatt PM, Shkurenko A, Belmabkhout Y, Aggarwal H, Weselinski LJ, Alsadun N, Samin U, Hedhili MN, Eddaoudi M, Chem., 4, 94 (2018).
  53. McDonald TM, Mason JA, Kong XQ, Bloch ED, Gygi D, Dani A, Crocella V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LWF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, B, Nature, 519(7543), 303, 2015
  54. Karahan O, Bicer E, Tasdemir A, Yurum A, Gursel A, Eur. J. Inorg. Chem., 2018, 1073, 2018
  55. Han X, Godfrey HGW, Briggs L, Davies AJ, Cheng Y, et al., Nature Materials, 17, 691, 2018
  56. Karahan O, Bicer E, Tasdemir A, Yurum A, Gursel SA, Eur. J. Inorg. Chem., 2018(9), 1073, 2018
  57. Gu JM, Kim WS, Huh S, Dalton Transactions, 40, 10826, 2011
  58. Ma X, Zhou YX, Liu H, Li Y, Jiang HL, Chem. Commun., 52, 7719, 2016
  59. Liu Z, Dong W, Cheng S, Guo S, Shang N, Gao S, Feng C, Wang C, Wang Z, Catal. Commun., 95, 50, 2017
  60. Tang B, Song WC, Yang EC, Zhao XJ, RSC Adv., 7(3), 1531, 2017
  61. Noll, Kenneth E, Adsorption technology for air and water pollution control, CRC Press (1991).
  62. Kammerer J, Carle R, Kammerer DR, J. Agric. Food Chem., 59, 22, 2011
  63. Leenaerts O, Partoens B, Peeters FM, Appl. Phys. Lett., 93, 193107, 2008
  64. Petit C, Bandosz TJ, Adv. Funct. Mater., 21(11), 2108, 2011
  65. Schumacher S, Wehling TO, Lazic P, Runte S, Forster DF, et al., Nano Lett., 13, 5013, 2013
  66. Burtch NC, Jasuja H, Walton KS, Chem. Rev., 114(20), 10575, 2014
  67. Szulejko JE, Kim KH, Parise J, Seeking the most powerful and practical sorbents for real-world applications based on performance metrics, Submitted (2018).
  68. Khan A, Szulejko JE, Kim KJ, Brown RJ, J. Environ. Manage., 209, 525, 2018
  69. Kim YH, Kim KH, Anal. Chem., 85, 5087, 2013
  70. Pawliszyn J, Sampling and sample preparation for field and laboratory: fundamentals and new directions in sample preparation, Elsevier (2002).
  71. Gregg SJ, Sing KSW, Salzberg HW, J. Electrochem. Soc., 114(11), 279C, 1967
  72. Brunauer S, Copeland L, Physical adsorption of gases and vapors on solids, In Symposium on Properties of Surfaces, ASTM International (1963).
  73. Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov RV, Kobayashi TC, Sakamoto H, Chiba T, Takata M, Kawazoe Y, Mita Y, Nature, 436, 238, 2005
  74. Panella B, Hirscher M, Putter H, Muller U, Adv. Funct. Mater., 16(4), 520, 2006
  75. Rowsell JLC, Yaghi OM, J. Am. Chem. Soc., 128(4), 1304, 2006
  76. Luebbers MT, Wu TJ, Shen LJ, Masel RI, Langmuir, 26(13), 11319, 2010
  77. Huang CY, Song M, Gu ZY, Wang HF, Yan XP, Environ. Sci. Technol., 45, 4490, 2011
  78. Kim YH, Kumar P, Kwon EE, Kim KH, Microchem. J., 132, 219, 2017
  79. Gasser RPH, Ehrlich G, Phys. Today, 40, 128, 1987
  80. Jin WG, Chen W, Xu PH, Lin XW, Huang XC, Chen GH, Lu F, Chen XM, Chem.-A Eur. J., 23, 13058, 2017
  81. Chen C, Cai LX, Tan B, Zhang YJ, Yang XD, Lin S, Zhang J, Cryst. Growth Des., 17, 1843, 2017
  82. MacKenzie W, Sherrington D, Polymer, 21, 791, 1980
  83. Jung JH, Lee JH, Silverman JR, John G, Chem. Soc. Rev., 42, 924, 2013
  84. Meek ST, Greathouse JA, Allendorf MD, Adv. Mater., 23(2), 249, 2011
  85. Sabo M, Henschel A, Frode H, Klemm E, Kaskel S, J. Mater. Chem., 17, 3827, 2007
  86. Luz I, Xamena FXLI, Corma A, J. Catal., 276(1), 134, 2010
  87. Genna DT, Wong-Foy AG, Matzger AJ, Sanford MS, J. Am. Chem. Soc., 135, 10586, 2013
  88. Zhang X, Xamena FXLI, Corma A, J. Catal., 265(2), 155, 2009
  89. Luz I, Xamena FXLI, Corma A, J. Catal., 285(1), 285, 2012
  90. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT, Chem. Soc. Rev., 38, 1450, 2009
  91. Du Y, Yang H, Wan S, Jin Y, Zhang W, J. Mater. Chem. A, 5, 9163, 2017
  92. Gupta M, De D, Pal S, Pal TK, Tomar K, Dalton Transactions, 46, 7619, 2017
  93. Chen B, Xiang S, Qian G, Accounts Chem. Res., 43, 1115, 2010
  94. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT, Chem. Rev., 112, 1105 (2011).
  95. Kumar P, Deep A, Kim KH, TrAC Trends Anal. Chem., 73, 39, 2015
  96. Kumar P, Pournara A, Kim KH, Bansal V, Rapti S, Manos MJ, Prog. Mater. Sci., 86, 25, 2017
  97. Vikrant K, Tsang DC, Raza N, Giri BS, Kukkar D, Kim KH, ACS Appl. Mater. Interfaces, 10, 8797, 2018
  98. Gouma PI, Nanomaterials for chemical sensors and biotechnology, Pan Stanford (2009).
  99. Aulsebrook ML, Biswas S, Leaver FM, Grace MR, Graham B, Barrios AM, Tuck KL, Chem. Commun., 53, 4911, 2017
  100. Zhao Y, Xu X, Qiu L, Kang X, Wen L, Zhang B, ACS Appl. Mater. Interfaces, 9, 15164, 2017
  101. Deep A, Bhardwaj SK, Paul A, Kim KH, Kumar P, Biosens. Bioelectron., 65, 226, 2015
  102. Troyano J, Castillo O, Martinez JI, Fernandez.Moreira V, Ballesteros Y, Maspoch D, Zamora F, Delgado S, Adv. Funct. Mater., 28, 170404, 2018
  103. Julien PA, Mottillo C, Friscic T, Green Chem., 19, 2729, 2017
  104. Wang A, Fan R, Zhou X, Hao S, Zheng X, Yang Y, ACS Appl. Mater. Interfaces, 10, 9744, 2018
  105. Gholami F, Zinadini S, Zinatizadeh AA, Abbasi AR, Sep. Purif. Technol., 194, 272, 2018
  106. DeCoste JB, Peterson GW, Chem. Rev., 114(11), 5695, 2014
  107. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D, Chem. Soc. Rev., 43(16), 5594, 2014
  108. Zhu L, Liu XQ, Jiang HL, Sun LB, Chem. Rev., 117(12), 8129, 2017
  109. Smoke T, Smoking I, IARC monographs on the evaluation of carcinogenic risks to humans, IARC, Lyon, 1-1452 (2004).
  110. Machado CA, Robbins N, Gilbert MTP, Herre EA, Proc. Natl. Acad. Sci., 102, 6558, 2005
  111. Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C, Gastl GA, Amann A, Int. J. Mass Spectrom., 265, 49, 2007
  112. Hakim C, Research Design: Succesful Designs for Social Economics Research, Routledge (2012).
  113. Guntner AT, Abegg S, Wegner K, Sens. Actuators B-Chem., 257, 916, 2018