Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1814-1825, 2019
Development of magnetically separable Cu catalyst supported by pre-treated steel slag
Wastewater contaminated with organic compounds is a serious problem; therefore, many catalysts, especially copper catalysts, have been developed to treat it and remove contaminants before discharge. However, such separation and reuse of these catalysts is often challenging. Steel slag (SS), a by-product of steel production, is produced in large quantities and requires careful disposal. Therefore, in this study, we developed a magnetically recyclable copper catalyst utilizing pre-treated magnetic steel slag (MSS) as a support. First, magnetic separation was carried out to remove calcium silicate impurities such as alite and belite in MSS up to five times, thus increasing the Fe content of the MSS. We synthesized the Cu catalyst supported by MSS (donated as Cu@MSS) and characterized the catalyst by various surface analysis techniques, showing the presence of CuO and CuCO3 nanoparticles on the MSS surface. In catalytic reduction tests of para-nitrophenol using sodium borohydride in the presence of Cu@MSS, the reaction was accelerated when using the five-times pre-treated MSS because of the removal of inhibitors such as calcium compounds, as well as the high content of iron oxides leading to a synergetic effect with metallic Cu in this study. In addition, we investigated the effects of various factors, including Cu loading, sodium borohydride concentration, and catalyst dosage, on the catalytic activity of Cu@MSS. The catalyst was found to be stable and reusable. In summary, these results suggest that treated SS can be used as a support material for copper catalysts for the treatment of contaminated wastewater and the easy separation and reuse of the catalyst.
[References]
  1. Kassim SM, Macromol. Symp., 320, 43, 2012
  2. Kim J, Kim HS, Bae S, Membr. Water Treat., 10, 1, 2019
  3. Yoon S, Bae S, J. Hazard. Mater., 365, 751, 2019
  4. Alanyali H, Col M, Yilmaz M, Karagoz S, Waste Manage., 26, 1133, 2006
  5. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C, J. Hazard. Mater., 152(2), 805, 2008
  6. Hamid S, Bae S, Lee W, Chem. Eng. J., 348, 877, 2018
  7. Fisher LV, Barron AR, Resour. Conserv. Recycl., 146, 244, 2019
  8. Zhang T, Yu Q, Wei J, Li J, Zhang P, Resour. Conserv. Recycl., 56, 48, 2011
  9. Lee JY, Choi JS, Yuan TF, Yoon YS, Mitchell D, Materials, 12, 1371, 2019
  10. Huijgen WJJ, Witkamp GJ, Comans RNJ, Environ. Sci. Technol., 39, 9676, 2005
  11. Wang X, Cai QS, Pedosphere, 16, 519, 2006
  12. Poh HY, Ghataora GS, Ghazireh N, J. Mater. Civ. Eng., 18, 229, 2006
  13. Repo E, Warchol JK, Westholm LJ, Sillanpaa M, J. Ind. Eng. Chem., 27, 115, 2015
  14. Zhang YJ, Liu LC, Xu Y, Wang YC, Xu DL, J. Hazard. Mater., 209-210, 146, 2012
  15. Cheng M, Zeng GM, Huang DL, Lai C, Liu Y, Xu P, Zhang C, Wan J, Hu L, Xiong WP, Zhou CY, Chem. Eng. J., 327, 686, 2017
  16. Horii K, Kato T, Sugahara K, Tsutsumi N, Kitano Y, Nippon Steel Sumitomo Met. Tech. Rep., 109 (2015).
  17. Zhao J, Wang D, Yan P, Li W, Appl. Sci., 6, 237, 2016
  18. Park J, Bae S, Chemosphere, 202, 733, 2018
  19. Kim M, Bae S, Chemosphere, 212, 1020, 2018
  20. Park J, Bae S, J. Hazard. Mater., 371, 72, 2019
  21. Chan YS, Chan MK, Ngien SK, Chew SY, Teng YK, Membr. Water Treat., 9, 1, 2018
  22. Khosroyar S, Arastehnodeh A, Membr. Water Treat., 9, 481, 2018
  23. Du XY, He J, Zhu J, Sun LJ, An SS, Appl. Surf. Sci., 258(7), 2717, 2012
  24. Jung J, Bae S, Lee W, Appl. Catal. B: Environ., 127, 148, 2012
  25. Park J, Bae S, Presented at the 2nd international conference on Bioresources, Energy, Environment, and Materials Technology (BEEM 2018), Hongcheon, Korea, June 10-13, 2018.
  26. Mandlimath TR, Gopal B, J. Mol. Catal. A-Chem., 350(1-2), 9, 2011
  27. Bae S, Gim S, Kim H, Hanna K, Appl. Catal. B: Environ., 182, 541, 2016
  28. Kim J, Bae S, Environ. Eng. Res., 24, 646, 2019
  29. Xi Z, Jingdong Z, Shengzhe W, Fei L, Open Chem., 16, 583, 2018
  30. Lin XM, Lv X, Wang LM, Zhang FF, Duan LF, Mater. Res. Bull., 48(7), 2511, 2013
  31. Pu S, Liu M, J. Alloy. Compd., 481, 851, 2009
  32. Jung S, Bae S, Lee W, Environ. Sci. Technol., 48, 9651, 2014
  33. Feng LL, Wang R, Zhang YY, Ji SP, Chuan YM, Zhang W, Liu B, Yuan C, Du CX, J. Mater. Sci., 54(2), 1520, 2019
  34. Mokhtar HH, Boukoussa B, Hamacha R, Bengueddach A, El Abed D, RSC Adv., 5, 93438, 2015
  35. Luo W, Jin R, Qin Y, Huang F, Wang C, Appl. Phys. Res., 2, 156, 2010
  36. Chen M, Zhu H, Li X, Yu J, Cai H, Quan X, Wang K, Zhang J, J. Nanomater., 2014, 1, 2014
  37. Zhu BL, Guo Q, Huang XL, Wang SR, Zhang SM, Wu SH, Huang WP, J. Mol. Catal. A-Chem., 249(1-2), 211, 2006
  38. Feng Q, Zhao W, Wen S, J. Alloy. Compd., 744, 301, 2018
  39. Pandey S, Mishra SB, Carbohydr. Polym., 113, 525, 2014
  40. Bhattacharjee A, Ahmaruzzaman M, RSC Adv., 6, 41348, 2016
  41. Gu S, Lu Y, Kaiser J, Albrecht M, Ballauff M, Phys. Chem. Chem. Phys., 17, 28137, 2015
  42. Arora S, Kapoor P, Singla ML, React. Kinet. Mech. Catal., 99, 157, 2010
  43. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M, J. Phys. Chem. C, 114, 8814, 2010
  44. Zhang P, Sui Y, Xiao G, Wang Y, Wang C, Liu B, Zou G, Zou B, J. Mater. Chem. A, 1, 1632, 2013
  45. Li M, Su YJ, Hu J, Geng HJ, Wei H, Yang Z, Zhang YF, Mater. Res. Bull., 83, 329, 2016
  46. Ghosh S, Das R, Chowdhury IH, Bhanja P, Naskar MK, RSC Adv., 5, 101519, 2015
  47. Bae S, Gim S, Kim H, Dorcet V, Pasturel M, Greneche JM, Darbha GK, Hanna K, J. Phys. Chem. C., 121, 25195, 2017