Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1806-1813, 2019
Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption
Volatile organic compounds (VOCs) can cause carcinogenic risk, odor problems, and even generation of particulate matter. Adsorption is an effective technique for controlling VOC emissions at the source. In this study, porous clay heterostructure (PCH) was considered as a possible VOC adsorbent, and the synthesis conditions were optimized. The ratio of tetraethyl orthosilicate (TEOS) compared to organoclay and dodecylamine (DDA) was selected as a synthesis condition variable (organoclay : dodecylamine : TEOS=1 : 1 : 30-120). We investigated the change of morphology and porosity of PCH by using a transmission electron microscope, nitrogen adsorption/desorption, and x-ray fluorescence. The porosity of PCH was changed depending on the TEOS ratio. As the ratio of TEOS decreased, the pore size of the PCH also decreased. However, irregular layer expansion was observed due to the swelling of organoclay by DDA in PCH30. To evaluate the possibility of using PCH as an adsorbent for low concentration VOCs, specifically toluene and decane, adsorption experiments were conducted, and it was confirmed that micropores play an essential role for low concentration VOC adsorption. PCH60 was selected as an optimal condition. The toluene and decane adsorption capacity of PCH60 was, respectively, measured as 122.92mg/g and 886.73mg/g.
[References]
  1. Shareefdeen Z, Singh A, Biotechnology for odor and air pollution control, Springer Science & Business media, Berlin, Heidelberg (2005).
  2. Tancrede M, Wilson R, Zeise L, Crouch EAC, Atmos. Environ., 21, 2187, 1987
  3. Iranpour R, Cox HHJ, Deshusses MA, Schroeder ED, Environ. Prog. Sustain. Energy, 24, 254, 2005
  4. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, et al., Atmos. Chem. Phys., 5, 1053, 2005
  5. Derwent RG, Jenkin ME, Utembe SR, Shallcross DE, Murrells TP, Passant NR, Sci. Total Environ., 408, 3374, 2010
  6. Shin H, Kim J, Lee S, Kim Y, Environ. Sci. Pollut. Res., 20, 1468, 2013
  7. Leson G, Winer AM, J. Air Waste Manage. Assoc., 41, 1045, 1991
  8. Granstrom T, Lindberg P, Nummela J, Jokela J, Leisola M, Biodegradation, 13, 155, 2002
  9. Campesi MA, Luzi CE, Barreto GF, Martinez OM, J. Environ. Manage., 154, 216, 2015
  10. Choi BS, Yi J, Chem. Eng. J., 76(2), 103, 2000
  11. Chiang Y, Chiang P, Huang C, Carbon, 39, 523, 2001
  12. Ghoshal AK, Manjare SD, J. Loss Prevent. Proc., 15, 413, 2002
  13. Ioannidou O, Zabaniotou A, Renew. Sust. Energ. Rev., 11, 1966, 2007
  14. Strudgeon GE, Lewis BJ, Albury WW, Clinger RC, J. Water Pollut. Control Fed., 52, 2516, 1980
  15. Zhu L, Tian S, Shi Y, Clay. Clay Miner., 53, 123, 2005
  16. Delage F, Pre P, LeCloirec P, Environ. Sci. Technol., 34, 4816, 2000
  17. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391, 2000
  18. Khan SA, Khan MA, Riaz-ur-Rehman, Waste Manage., 15, 271, 1995
  19. Wang K, Xing B, J. Environ. Qual., 34, 342, 2005
  20. Qu F, Zhu LZ, Yang K, J. Hazard. Mater., 170(1), 7, 2009
  21. He H, Ma L, Zhu J, Frost RL, Theng BKG, Bergaya F, Appl. Clay Sci., 100, 22, 2014
  22. Deng L, Yuan P, Liu D, Annabi-Bergaya F, Zhou J, Chen F, Liu Z, Appl. Clay Sci., 143, 184, 2017
  23. de Paiva LB, Morales AR, Diaz FR, Appl. Clay Sci., 42, 8, 2008
  24. Pires J, Carvalho A, de Carvalho MB, Microporous Mesoporous Mater., 43, 277, 2001
  25. Galarneau A, Barodawalla A, Pinnavaia TJ, Nature, 374(6522), 529, 1995
  26. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 43, 1758, 2005
  27. Modak SK, Mandal A, Chakrabarty D, Polym. Compos., 34, 32, 2013
  28. Wang Y, Zhang P, Wen K, Su X, Zhu J, He H, Microporous Mesoporous Mater., 224, 285, 2016
  29. Kwon KD, Jo WK, Lim HJ, Jeong WS, J. Hazard. Mater., 148(1-2), 192, 2007
  30. Park JA, Kang JK, Kim JH, Kim SB, Yu S, Kim TH, Environ. Eng. Res., 20, 133, 2015
  31. Hu Y, Liu L, Min F, Zhang M, Song S, Colloids Surf. A: Physicochem. Eng. Asp., 434, 281, 2013
  32. Kosuge K, Kubo S, Kikukawa N, Takemori M, Langmuir, 23(6), 3095, 2007
  33. Sing KSW, Pure Appl. Chem., 57, 603, 1985
  34. Chen H, Schiraldi DA, Polym. Rev., 59, 1, 2019
  35. Guo Q, Liu YZ, Qi GS, Jiao WZ, Chem. Eng. Res. Des., 143, 47, 2019
  36. Amari A, Chlendi M, Gannouni A, Bellagi A, Appl. Clay Sci., 47, 457, 2010
  37. Benkhedda J, Jaubert J, Barth D, Perrin L, J. Chem. Eng. Data, 45, 650, 2000
  38. Wang CM, Chang KS, Chung TW, Wu HD, J. Chem. Eng. Data, 49(3), 527, 2004
  39. Lillo-Rodenas MA, Fletcher AJ, Thomas KM, Cazorla-Amoros D, Linares-Solano A, Carbon, 44, 1455, 2006
  40. Zhang J, Lu S, Li J, Zhang P, Xue H, Zhao X, Xie L, Energies, 10, 1586, 2017
  41. Ushiki I, Ota M, Sato Y, Inomata H, Fluid Phase Equilib., 375, 293, 2014
  42. Azambre B, Westermann A, Finqueneisel G, Can F, Comparot JD, J. Phys. Chem. C, 119, 315, 2015
  43. Ushiki I, Ota M, Sato Y, Inomata H, Fluid Phase Equilib., 344, 101, 2013
  44. Takahashi N, Ushiki I, Hamabe Y, Ota M, Sato Y, Inomata H, J. Supercrit. Fluids, 107, 226, 2016