Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1799-1805, 2019
Free chlorine and phytic acid synergistically inactivated conidia of Aspergillus spp.
Chlorination has been widely used to disinfect various microbials in the environment, but its fungicidal activity is known to be limited. Here, we demonstrate that a combinatorial treatment with free chlorine and phytic acid exerted high fungicidal activities against selected species of Aspergillus. Treatment with either chlorine (7mg/l) or phytic acid (~400mg/l) without pH adjustment caused marginal inactivation of Aspergillus niger conidia within 5min. However, the combinatorial treatment with free chlorine and phytic acid inactivated 98% of A. niger conidia within 5min (CT=25.7mg/l·min). Overall fungicidal efficiency of combinatorial application was higher (~256%) than the sum of inactivation levels by individual treatment, suggesting a synergistic effect between free chlorine and phytic acid. Transmission electron microscopy observation showed that free chlorine primarily disrupted nucleo-cytosolic organs, whereas phytic acid preferentially disintegrated the cell wall and plasma membrane. The combination of both agents demolished the conidial structure of A. niger. The effects of these chemicals on the cell membrane were verified with propidium iodide staining, lipid peroxidation, and extracellular ATP secretion. Fungicidal activities of chlorine and phytic acid were further confirmed against A. parasiticus and A. flavus. Our data suggest that the mixture of free chlorine and phytic acid without any additional preparation may efficiently disinfect Aspergillus spp. through the synergistic activities of individual components.
[References]
  1. Guinea J, Pelaez T, Alcala L, Bouza E, Med. Mycol., 44, 349, 2006
  2. Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S, Curr. Med. Mycol., 2, 36, 2016
  3. Brahm H, Segal MD, N. Engl. J. Med., 360, 1870, 2009
  4. Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG, Front. Microbiol., 7, 2170, 2016
  5. Zhu L, Zhang B, Dai Y, Li H, Xu W, Toxins, 9, 113, 2017
  6. Ma X, Bibby K, Water Res., 120, 265, 2017
  7. Nourmoradi H, Nikaeen M, Stensvold CR, Mirhendi H, Water Res., 46, 5935, 2012
  8. Sokmen M, Tatlidil I, Breen C, Clegg F, Buruk CK, Sivlim T, Akkan S, J. Hazard. Mater., 187(1-3), 199, 2011
  9. Piacentini KC, Savi GD, Scussel VM, Qual. Assur. Saf. Crop., 9, 383, 2017
  10. Hassan R, El-Kadi S, Sand M, J. Adv. Biol., 2, 1, 2015
  11. Fukuzaki S, Biocontrol. Sci., 11, 147, 2006
  12. Pereira VJ, Marques R, Marques M, Benoliel MJ, Crespo MTB, Water Res., 47, 517, 2013
  13. Wen G, Xu X, Huang T, Zhu H, Ma J, Water Res., 125, 132, 2017
  14. Sisti M, Brandi G, De Santi M, Rinaldi L, Schiavano GF, J. Water Health, 10, 11, 2012
  15. Kanzler D, Buzina W, Paulitsch A, Haas D, Platzer S, Marth E, Mascher F, Mycoses, 51, 165, 2008
  16. Al-Gabr HM, Zheng T, Yu X, Sci. Total. Environ., 463-464, 525, 2013
  17. Groot MN, Abee T, van Bokhorst-van de Veen H, Food Microbiol., 81, 108, 2019
  18. Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, et al., Proc. Natl. Acad. Sci. USA, 112, E1490, 2015
  19. Pohl CH, Kock JLF, Thibane VS, Antifungal free fatty acids: A review, Formatex, Badajoz (2011).
  20. Yun J, Lee DG, FEMS Yeast Res., 16, 1, 2016
  21. Petrovic M, Bonvin D, Hofmann H, Ebersold MM, Int. J. Mol. Sci., 19, 1, 2018
  22. Li XC, Jacob MR, Khan SI, Ashfaq MK, Babu KS, Agarwal AK, Elsohly HN, Manly SP, Clark AM, Antimicrob. Agents Chemother., 52, 2442, 2008
  23. Sakko M, Moore C, Novak-Frazer L, Rautemaa V, Sorsa T, Hietala P, Jarvinen A, Bowyer P, Tjaderhane L, Rautemaa R, Mycoses, 57, 214, 2014
  24. Puvvada S, Latha P, Jayalakshmi KB, Arul SK, Int. J. Appl. Dent. Sci., 3, 19, 2017
  25. Nassar R, Nassar M, Int. Arab. J. Antimicrob. Agents, 6, 1, 2016
  26. Yadav AK, Sirohi P, Saraswat S, Rani M, Singh MP, Srivastava S, Singh NK, Curr. Microbiol., 75(7), 849, 2018
  27. Hue JJ, Li L, Lee YE, Lee KN, Nam SY, Yun YW, Jeong JH, Lee SH, Yoo HS, Lee BJ, J. Food Hyg. Saf., 22, 37, 2007
  28. Kim NH, Rhee MS, Appl. Environ. Microbiol., 82, 1040, 2016
  29. Cho M, Chung H, Yoon J, Environ. Sci. Technol., 37, 2134, 2003
  30. Cho M, Kim H, Cho SH, Yoon J, Ozone Sci. Eng., 25, 251, 2003
  31. Cho M, Kim JH, Yoon J, Water Res., 40, 2911, 2006
  32. Karnovsky MJ, J. Cell Biol., 27, A137, 1965
  33. Dhandole LK, Seo YS, Kim SG, Kim A, Cho M, Jang JS, Photochem. Photobiol. Sci., 18, 1092, 2019
  34. Sobsey MD, Fuji T, Shields PA, Water Sci. Technol., 20, 385, 1988
  35. Driedger AM, Rennecker JL, Marinas BJ, Water Res., 34, 3591, 2000
  36. Cho M, Gandhi V, Hwang TM, Lee S, Kim JH, Water Res., 45, 1063, 2011
  37. Hawkins CL, Pattison DI, Davies MJ, Amino Acids, 25, 259, 2003
  38. Breeuwer P, Abee T, Int. J. Food Microbiol., 55, 193, 2000
  39. Berney M, Weilenmann HU, Egli T, Microbiology, 152, 1719, 2006
  40. Zhou Q, Zhao Y, Dang H, Tang Y, Zhang B, J. Food Prot., 82, 826, 2019
  41. Leive L, Biochem. Biophys. Res. Commun., 21, 290, 1965
  42. Vaara M, Microbiol. Rev., 56, 395, 1992
  43. Helander IM, Mattila-Sandholm T, J. Appl. Microbiol., 88(2), 213, 2000