Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1791-1798, 2019
Visible-to-UV triplet-triplet annihilation upconversion from a thermally activated delayed fluorescence/pyrene pair in an air-saturated solution
Despite increasing use of triplet-triplet annihilation upconversion (TTA-UC) of low-energy visible light, the generation of ultraviolet (UV) photons by TTA remains challenging because of the difficulty in finding sensitizers and acceptors with suitable energy levels. Here, we report efficient, photostable visible-to-UV TTA-UC in an air-saturated solution using a new pair with suitable energy levels: a thermally activated delayed fluorescence (TADF) molecule and pyrene. 4CzIPN, which has extremely small energy difference ΔEST (0.083 eV), was used as the TADF sensitizer to promote effective triplet energy transfer to the acceptor. When oleic acid was used as an effective singlet oxygen receptor in an air-saturated solution, the 4CzIPN/pyrene pair exhibited bright upconverted emission at 370-430 nm under 445 nm laser excitation, but no noticeable upconverted emission was observed when 4CzIPN was paired with previously reported UV-emitting acceptors [2,5-diphenyloxazole (PPO), p-terphenyl, and p-quaterphenyl]. TTA was confirmed by the quadratic dependence of the upconverted emission intensity on the 445 nm laser power density. The maximum quantum yield of the upconverted emission from the 4CzIPN/pyrene pair was 0.66%, which is considerable when compared with that of a previously reported visible-to-UV TTA-UC system with a biacetyl/PPO pair (0.58%).
[References]
  1. Sarina S, Waclawik ER, Zhu H, Green Chem., 15(7), 1814, 2013
  2. Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211, 2011
  3. Chen J, Loeb S, Kim JH, Environ. Sci.: Water Res. Technol., 3(2), 188, 2017
  4. Schulze TF, Schmidt TW, Energy Environ. Sci., 8(1), 103, 2015
  5. Trupke T, Green MA, Wurfel P, J. Appl. Phys., 92(7), 4117, 2002
  6. Cheng YY, Fuckel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW, Energy Environ. Sci., 5(5), 6953, 2012
  7. Chen G, Seo J, Yang C, Prasad PN, Chem. Soc. Rev., 42(21), 8304, 2013
  8. Gray V, Dzebo D, Abrahamsson M, Albinsson B, Moth-Poulsen K, Phys. Chem. Chem. Phys., 16(22), 10345, 2014
  9. de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI, Energy Environ. Sci., 4(12), 4835, 2011
  10. Kim JH, Deng F, Castellano FN, Kim JH, Chem. Mater., 24(12), 2250, 2012
  11. Cheng YY, Fuckel B, Khoury T, Clady RGCR, Tayebjee MJY, Ekins-Daukes NJ, Crossley MJ, Schmidt TW, J. Phys. Chem. Lett., 1(12), 1795, 2010
  12. Monguzzi A, Tubino R, Hoseinkhani S, Campione M, Meinardi F, Phys. Chem. Chem. Phys., 14(13), 4322, 2012
  13. Khnayzer RS, Blumhoff J, Harrington JA, Haefele A, Deng F, Castellano FN, Chem. Commun., 48(2), 209, 2012
  14. Zhao J, Ji S, Guo H, RSC Adv., 1(6), 937, 2011
  15. Castellano FN, McCusker CE, Dalton Trans., 44, 17906, 2015
  16. Wu W, Zhao J, Sun J, Guo S, J. Org. Chem., 77, 5305, 2012
  17. Wu W, Cui X, Zhao J, Chem. Commun., 49(79), 9009, 2013
  18. Zhou J, Liu Q, Feng W, Sun Y, Li FY, Chem. Rev., 115(1), 395, 2015
  19. Ji S, Wu W, Wu W, Guo H, Zhao J, Angew. Chem.-Int. Edit., 50, 1626, 2011
  20. Guo S, Xu L, Xu K, Zhao J, Kucukoz B, Karatay A, Yaglioglu HG, Hayvali M, Elmali A, Chem. Sci., 6, 3724, 2015
  21. Singh-Rachford TN, Castellano FN, J. Phys. Chem. A, 113(20), 5912, 2009
  22. Zhao W, Castellano FN, J. Phys. Chem. A, 110(40), 11440, 2006
  23. Wu TC, Congreve DN, Baldo MA, Appl. Phys. Lett., 107(3), 031103, 2015
  24. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C, Nature, 492(7428), 234, 2012
  25. Yanai N, Kozue M, Amemori S, Kabe R, Adachi C, Kimizuka N, J. Mater. Chem. C, 4(27), 6447, 2016
  26. Kim BS, Lee JY, ACS Appl. Mater. Interfaces, 6(11), 8396, 2014
  27. Liu Q, Xu M, Yang T, Tian B, Zhang X, Li F, ACS Appl. Mater. Interfaces, 10(12), 9883, 2018
  28. Gray V, Xia P, Huang Z, Moses E, Fast A, Fishman DA, Vullev VI, Abrahamsson M, Moth-Poulsen K, Tang ML, Chem. Sci., 8(8), 5488, 2017
  29. Kretzschmar A, Patze C, Schwaebel ST, Bunz UHF, J. Org. Chem., 80(18), 9126, 2015
  30. Singh-Rachford TN, Castellano FN, Coord. Chem. Rev., 254(21), 2560, 2010
  31. Ong LC, Ang LY, Alonso S, Zhang Y, Biomaterials, 35(9), 2987, 2014
  32. Yanai N, Kimizuka N, Chem. Commun., 52(31), 5354, 2016
  33. Kim JH, Kim JH, J. Am. Chem. Soc., 134(42), 17478, 2012
  34. Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F, J. Am. Ceram. Soc., 135, 5029, 2013
  35. Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ, Proc. Natl. Acad. Sci. USA, 106(27), 10917, 2009
  36. Peng J, Guo X, Jiang X, Zhao D, Ma Y, Chem. Sci.7, 1233(2), 2016
  37. Li C, Koenigsmann C, Deng F, Hagstrom A, Schmuttenmaer CA, Kim JH, ACS Photonics, 3(5), 784, 2016
  38. Hagstrom AL, Lee HL, Lee MS, Choe HS, Jung J, Park BG, Han WS, Ko JS, Kim JH, Kim JH, ACS Appl. Mater. Interfaces, 10(10), 8985, 2018
  39. Okumura K, Mase K, Yanai N, Kimizuka N, Chem. Eur. J., 22(23), 7721, 2016