Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1785-1790, 2019
Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization
The inactivation kinetics of E. coli and MS2 coliphage by singlet oxygen (1O2) were investigated in a homogeneous photosensitization system using Rose Bengal (RB) and visible light illumination (the Vis/RB system). The inactivation of E. coli and MS2 in the Vis/RB system was monitored over time with variations of several parameters such as pH, light intensity, concentration of RB, and the presence of dissolved oxygen. In addition, the concentration of 1O2 generated by the Vis/RB system was quantified using furfuryl alcohol under each microbial inactivation conditions. Based on the obtained results, the degree of microbial inactivation was quantitatively correlated with 1O2 exposure using the (delayed) Chick-Watson model. The Ct (concentration-time product) values of 1O2 required for 2 log microbial inactivation were found to be 1.3×10-4 mg·min/L for E. coli and 1.9×10-5 mg·min/L for MS2, respectively. The inactivation of E. coli exhibited an initial lag phase until 0.5×10-4 mg·min/L of Ct.
[References]
  1. Kohn T, Nelson KL, Environ. Sci. Technol., 41, 192, 2007
  2. Cho M, Chung H, Choi W, Yoon J, Water Res., 38, 1069, 2004
  3. Horie Y, David DA, Taya M, Tone S, Ind. Eng. Chem. Res., 35(11), 3920, 1996
  4. Cho M, Lee J, Mackeyev Y, Wilson LJ, Alvarez PJJ, Hughes JB, Kim JH, Environ. Sci. Technol., 44, 6685, 2010
  5. Mamane H, Shemer H, Linden KG, J. Hazard. Mater., 146(3), 479, 2007
  6. Liu C, Kong DS, Hsu PC, Yuan HT, Lee HW, Liu YY, Wang HT, Wang S, Yan K, Lin DC, Maraccini PA, Parker KM, Boehm AB, Cui Y, Nat. Nanotechnol., 11(12), 1098, 2016
  7. Dahl TA, Midden WR, Hartman PE, Photochem. Photobiol., 48, 345, 1987
  8. Dahl TA, Midden WR, Hartman PE, Photochem. Photobiol., 48, 605, 1989
  9. Dahl TA, Midden WR, Necker DC, J. Bacteriol., 171, 2188, 1988
  10. Bezman SA, Burtis PA, Izod TPJ, Thayer MA, Photochem. Photobiol., 28, 325, 1978
  11. Hotze EM, Badireddy AR, Chellam S, Weisner MR, Environ. Sci. Technol., 43, 6639, 2009
  12. Muller-Breitkreutz K, Mohr H, Brivida K, Seis H, J. Photoch. Photobio. B-Biol., 30, 63, 1995
  13. Schafer M, Schmitz C, Facius R, Horneck G, Milow B, Funken KH, Ortner J, Photochem. Photobiol., 71, 514, 2000
  14. Silverman AI, Peterson BM, Boehm AB, McNeill K, Nelson KL, Environ. Sci. Technol., 47, 1870, 2013
  15. Ryberg E, Chu C, Kim JH, Environ. Sci. Technol., 52, 13361, 2018
  16. Cho M, Chung H, Choi W, Yoon J, Appl. Environ. Microbiol., 71, 270, 2005
  17. Foster HA, Ditta IB, Varghese S, Steele A, Appl. Microbiol. Biotechnol., 90(6), 1847, 2011
  18. Castro-Alferez M, Polo-Lopez MI, Fernandez-Ibanez P, Sci. Rep., 6, 38145, 2016
  19. Amrullah A, Paksung N, Matsumura Y, Korean J. Chem. Eng., 36(3), 433, 2019
  20. Brame J, Long M, Li Q, Alvarez P, Water Res., 60, 259, 2014
  21. Foote CS, Science, 162, 963, 1968
  22. Foote CS, Accounts Chem. Res., 1, 104, 1968
  23. Jimenez-Hernandez ME, Manjon F, Garcia-Fresnadillo D, Orellana G, Sol. Energy, 80(10), 1382, 2006
  24. Buck JD, Cleverdon RC, Limnol. Oceanogr., 5, 78, 1960
  25. Park SY, Kim CG, Environ. Eng. Res., 23, 282, 2018
  26. Wentworth BB, French L, Exp. Biol. Med., 135, 253, 1970
  27. Scully FE, Hoigne J, Chemosphere, 16, 681, 1987
  28. Kouame Y, Haas CN, Water Res., 25, 1027, 1991
  29. Hunt NK, Marinas BJ, Water Res., 31, 1355, 1997
  30. Rennecker JL, Marinas BJ, Owens JH, Rice EW, Water Res., 33, 2481, 1999
  31. Muller DJ, Engel A, J. Mol. Biol., 285, 1347, 1999
  32. Cho M, Kim J, Kim JY, Yoon J, Kim JH, Water Res., 44, 3410, 2010
  33. Cho M, Lee Y, Chung H, Yoon J, Appl. Environ. Microbiol., 70, 1129, 2004
  34. Cho M, Doctoral dissertation, Seoul National University, Seoul, Korea (2005).