Issue
Korean Journal of Chemical Engineering,
Vol.36, No.11, 1753-1766, 2019
A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications
Electrochemically self-doped TiO2 nanotube arrays (known as reduced TiO2 nanotube arrays, r-TiO2 NTAs) are currently drawing great attention as emerging and promising materials for energy and environmental applications as they exhibit highly enhanced electrochemical properties, such as good capacitive properties and electro- and photocatalytic activity when compared to pristine TiO2 NTAs. Such enhanced properties are attributed to the introduction of trivalent titanium (Ti(III)) as a self-dopant in the lattice of pristine TiO2 NTAs through simple electrochemical reduction. However, in spite of the great interest in, and potential of this material, there is no comprehensive review on the synthesis and applications of r-TiO2 NTAs. Therefore, in this review, we critically and briefly review r-TiO2 NTAs in terms of the electrochemical self-doping mechanism, their functional features, and various applications including photolysis, dyesensitized solar cells (DSSCs), biomedical coatings and drug delivery. In addition, to better understanding r-TiO2 NTAs, pristine TiO2 NTAs are briefly introduced. Furthermore, this review proposes future research directions with major challenges to be overcome for the successful development of r-TiO2 NTAs, such as to standardize matrices for performance evaluation, to confirm the organic degradation performance as anode, and to improve mechanical stability.
[References]
  1. Roy P, Berger S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904, 2011
  2. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 6, 215, 2006
  3. Hou Y, Li X, Zhao Q, Quan X, Chen G, Environ. Sci. Technol., 44, 5098, 2010
  4. Jun Y, Park JH, Kang MG, Chem. Commun., 48, 6456, 2012
  5. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90(14), 2011, 2006
  6. Grimes CA, J. Mater. Chem., 17, 1451, 2007
  7. Mohamed AER, Rohani S, Energy Environ. Sci., 4, 1065, 2011
  8. Mor G, Grimes C, TiO2 nanotube arrays-synthesis, properties and applications, Springer, New York (2009).
  9. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  10. Choi W, Termin A, Hoffmann MR, Angew. Chem.-Int. Edit., 33, 1091, 1994
  11. Chen XB, Liu L, Yu PY, Mao SS, Science, 331(6018), 746, 2011
  12. Macak JM, Gong BG, Hueppe M, Schmuki P, Adv. Mater., 12, 3027, 2007
  13. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P, Curr. Opin. Solid State Mater. Sci., 11, 3, 2007
  14. Nah YC, Paramasivam I, Schmuki P, ChemphysChem, 11, 2698, 2010
  15. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y, Nano Lett., 12, 1690, 2012
  16. Zaleska A, Recent Pat. Eng., 2, 157, 2008
  17. Park JH, Kim S, Bard AJ, Nano Lett., 6, 24, 2006
  18. Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA, J. Am. Chem. Soc., 130(34), 11312, 2008
  19. Zhang Z, Hedhili MN, Zhu H, Wang P, Phys. Chem. Chem. Phys., 15, 15637, 2013
  20. Liao WJ, Yang JW, Zhou H, Murugananthan M, Zhang YR, Electrochim. Acta, 136, 310, 2014
  21. Xu C, Song Y, Lu L, Cheng C, Liu D, Fang X, Chen X, Zhu X, Li D, Nanoscale Res. Lett., 8, 391, 2013
  22. Zhong WJ, Sang SB, Liu YY, Wu QM, Liu KY, Liu HT, J. Power Sources, 294, 216, 2015
  23. Zheng Q, Lee HJ, Lee J, Choi W, Park NB, Leo C, Chem. Eng. J., 249, 285, 2014
  24. Raj CC, Prasanth R, J. Electrochem. Soc., 165(9), E345, 2018
  25. Kim C, Kim S, Choi J, Lee J, Kang JS, Sung YE, Lee J, Choi W, Yoon J, Electrochim. Acta, 141, 113, 2014
  26. Kim C, Kim S, Lee J, Kim J, Yoon J, ACS Appl. Mater. Interfaces, 7, 7486, 2015
  27. Yang Y, Liao J, Li Y, Cao X, Li N, Wang C, Lin S, RSC Adv., 6, 46871, 2016
  28. Jeong HW, Park KJ, Han DS, Park H, Appl. Catal. B: Environ., 226, 194, 2018
  29. Kim C, Lee S, Kim S, Yoon J, Electrochim. Acta, 222, 1578, 2016
  30. Zhang AQ, Gong FL, Xiao YH, Guo XP, Li F, Wang LZ, Zhang Y, Zhang LS, J. Electrochem. Soc., 164(2), H91, 2017
  31. Kim C, Kim S, Hong SP, Lee J, Yoon J, Phys. Chem. Chem. Phys., 18, 14370, 2016
  32. Li Z, Ding YT, Kang WJ, Li C, Lin D, Wang XY, Chen ZW, Wu MH, Pan DY, Electrochim. Acta, 161, 40, 2015
  33. Peighambardoust NS, Asl SK, Mohammadpour R, Asl SK, Electrochim. Acta, 270, 245, 2018
  34. Vellacheri R, Zhao H, Muhlstadt M, Ming J, Haddad AA, Wu M, Jandt KD, Lei Y, Adv. Mater. Technol., 1, 160001, 2016
  35. Silva DD, Sanchez-Montes I, Hammer P, Aquino JM, Electrochim. Acta, 245, 165, 2017
  36. Anwar T, Li W, Sagar RUR, Nosheen F, Singh R, Jafri HM, Shehzad K, Liang TX, J. Mater. Sci., 52(8), 4323, 2017
  37. Radjenovic J, Sedlak DL, Environ. Sci. Technol., 49, 11292, 2015
  38. Kim J, Lee C, Yoon J, Ind. Eng. Chem. Res., 57(33), 11465, 2018
  39. Kim S, Kim C, Lee J, Kim S, Lee J, Kim J, Yoon J, ACS Sustainable Chem. Eng., 6, 1620, 2018
  40. Liu N, Schneider C, Freitag D, Zolnhofer EM, Meyer K, Schmuki P, Chem. Eur. J., 22, 13810, 2016
  41. Zhu H, Zhao MM, Zhou JK, Li WC, Wang HY, Xu Z, Lu L, Pei L, Shi Z, Yan SC, Li ZS, Zou ZG, Appl. Catal. B: Environ., 234, 100, 2018
  42. Zhu L, Ma H, Han H, Fu Y, Ma C, Yu Z, Dong X, RSC Adv., 8, 18992, 2018
  43. Zhou H, Zhang Y, J. Phys. Chem. C, 118, 5626, 2014
  44. Zhou H, Zhang YR, J. Power Sources, 239, 128, 2013
  45. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M, Surf. Interface Anal., 27, 629, 1999
  46. Zwilling V, Aucouturier M, Darque-Ceretti E, Electrochim. Acta, 45(6), 921, 1999
  47. Mor G, Varghese OK, Paulose M, Mukherjee N, Grimes CA, J. Mater. Res., 18, 2588, 2003
  48. Cai Q, Paulose M, Varghese OK, Grimes CA, J. Mater. Res., 20, 230, 2005
  49. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191, 2005
  50. Macak JM, Sirotna K, Schmuki P, Electrochim. Acta, 50(18), 3679, 2005
  51. Macak JM, Tsuchiya H, Schmuki P, Angew. Chem.-Int. Edit., 44, 2100, 2005
  52. Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P, J. Electrochem. Soc., 152(10), B405, 2005
  53. Albu SP, Ghicov A, Macak JM, Schmuki P, Phys. Status Solidi RRL, 1, R65, 2007
  54. Yasuda K, Schmuki P, Electrochim. Acta, 52(12), 4053, 2007
  55. Bauer S, Kleber S, Schmuki P, Electrochem. Commun., 8, 1321, 2006
  56. Berger S, Kunze J, Schmuki P, LeClere D, Valota AT, Skeldon P, Thompson GE, Electrochim. Acta, 54(24), 5942, 2009
  57. Li S, Zhang G, Guo D, Yu L, Zhang W, J. Phys. Chem. C, 113, 12759, 2009
  58. Hu L, Huo K, Chen R, Gao B, Fu J, Chu PK, Anal. Chem., 83, 8138, 2011
  59. Houser JE, Hebert KR, Nat. Mater., 8(5), 415, 2009
  60. Nguyen QAS, Bhargava YV, Radmilovic VR, Devine TM, Electrochim. Acta, 54(18), 4340, 2009
  61. Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE, Electrochim. Acta, 54(18), 4321, 2009
  62. Delplancke JL, Garnier A, Massiani Y, Winand R, Electrochim. Acta, 39(8-9), 1281, 1994
  63. Zhang DR, Jin XZ, Li JH, Master. Chem. Phys., 176, 68, 2016
  64. Arbiol J, Cerda J, Dezanneau G, Cirera A, Peiro F, Cornet A, Morante J, J. Appl. Phys., 92, 853, 2002
  65. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira M, Cab C, de Coss RD, Oskam G, Nanotechnology, 19, 145605, 2008
  66. Mor GK, Varghese OK, Paulose M, Grimes CA, Adv. Funct. Mater., 15(8), 1291, 2005
  67. Mahajan V, Misra M, Raja K, Mohapatra S, J. Phys. D-Appl. Phys., 41, 125307, 2008
  68. Kunat M, Burghaus U, Surf. Sci., 544, 170, 2003
  69. Funk S, Burghaus U, Catal. Lett., 118(1-2), 118, 2007
  70. Deb SK, Cells S, Sol. Energy Mater., 92, 245, 2008
  71. Hu FP, Ding FW, Song SQ, Shen PK, J. Power Sources, 163(1), 415, 2006
  72. Nakata K, Fujishima A, J. Photochem. Photobiol., C, 13, 169, 2012
  73. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761, 2013
  74. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P, Nano Lett., 13, 14, 2012
  75. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y, Nano Lett., 11, 3026, 2011
  76. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C, 25, 1, 2015
  77. Gratzel M, Inorg. Chem., 44(20), 6841, 2005
  78. Zhu K, Neale NR, Miedaner A, Frank AJ, Nano Lett., 7, 69, 2007
  79. Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Nanoscale Res. Lett., 2, 45, 2010
  80. Kar A, Raja K, Misra M, Surf. Coat. Technol., 201, 3723, 2006
  81. Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P, Angew. Chem.-Int. Edit., 48, 969, 2009
  82. Song YY, Roy P, Paramasivam I, Schmuki P, Angew. Chem.-Int. Edit., 49, 351, 2010
  83. Lee J, Kim DH, Hong SH, Jho JYJS, Sens. Actuators B-Chem., 160, 1494, 2011
  84. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL, Nano Lett., 6, 2009, 2006
  85. Berger S, Ghicov A, Nah YC, Schmuki P, Langmuir, 25(9), 4841, 2009
  86. Yamase T, Chem. Rev., 98(1), 307, 1998
  87. Zhou H, Zhang Y, J. Phys. Chem. C, 118, 5626, 2014
  88. Zhu WD, Wang CW, Chen JB, Li Y, Wang J, Appl. Surf. Sci., 301, 525, 2014
  89. Xue CR, Hu SL, Chang Q, Li N, Wang YZ, Liu W, Yang JL, J. Mater. Sci., 53(13), 9742, 2018
  90. Sierra-Uribe H, Carrera-Crespo JE, Cano A, Cordoba-Tuta EM, Gonzalez I, Acevedo-Pena P, J. Solid State Electrochem., 22, 1881, 2018
  91. Du K, Liu GH, Li MW, Wu CG, Chen XY, Wang KY, Electrochim. Acta, 210, 367, 2016
  92. Xing MY, Fang WZ, Nasir M, Ma YF, Zhang JL, Anpo M, J. Catal., 297, 236, 2013
  93. Song JN, Zheng MJ, Yuan XL, Li Q, Wang FZ, Ma LG, You YX, Liu SH, Liu PJ, Jiang DK, Ma L, Shen WZ, J. Mater. Sci., 52(12), 6976, 2017
  94. Zhang LQ, Cao HZ, Pen QY, Wu LK, Hou GY, Tang YP, Zheng GQ, Electrochim. Acta, 283, 1507, 2018
  95. Salari M, Konstantinov K, Liu HK, J. Mater. Chem., 21, 5128, 2011
  96. Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY, Song Y, Lu LF, Electrochim. Acta, 116, 129, 2014
  97. Zhu G, Lin T, Lu X, Zhao W, Yang C, Wang Z, Yin H, Liu Z, Huang F, Lin J, J. Mater. Chem. A, 1, 9650, 2013
  98. Liu J, Dai M, Wu J, Hu Y, Zhang Q, Cui J, Wang Y, Tan HH, Wu Y, Sci. Bulletin, 63, 194, 2018
  99. Salari M, Aboutalebi SH, Konstantinov K, Liu HK, Phys. Chem. Chem. Phys., 13, 5038, 2011
  100. Kim MS, Lee TW, Parka JH, J. Electrochem. Soc., 156(7), A584, 2009
  101. Li Q, Xia Z, Wang S, Zhang Y, Zhang Y, J. Solid State Electrochem., 21, 2177, 2017
  102. Samsudin NA, Zainal Z, Lim HN, Sulaiman Y, Chang SK, Lim YC, Amin M, Nadrah W, J. Nanomater., 2018, 1, 2018
  103. Duan J, Hou H, Liu X, Yan C, Liu S, Meng R, Hao Z, Yao Y, Liao Q, J. Porous Mat., 23, 837, 2016
  104. Zhang C, Xing J, Fan HW, Zhang WK, Liao MY, Song Y, J. Mater. Sci., 52(6), 3146, 2017
  105. Zhou H, Zhang YR, J. Power Sources, 272, 866, 2014
  106. Qin Y, Zhang J, Wang Y, Shu X, Yu C, Cui J, Zheng H, Zhang Y, Wu Y, RSC Adv., 6, 47669, 2016
  107. Duan J, Hou H, Liu X, Liu S, Liao Q, Yao Y, Ceram. Int., 42, 16611, 2016
  108. Duan J, Hou H, Liu X, Liao Q, Liu S, Yao Y, Ionics, 23, 3037, 2017
  109. Pletcher D, Walsh FC, Industrial electrochemistry, Springer Science & Business Media (2012).
  110. Lipkowski J, Ross PN, The electrochemistry of novel materials, VCH Publishers (1994).
  111. Fujishima A, Einaga Y, Rao TN, Tryk DA, Diamond electrochemistry, Elsevier (2005).
  112. Kim JY, Kim CS, KiM SH, Yoon JY, J. Ind. Eng. Chem., 66, 478, 2018
  113. Yang Y, Hoffmann MR, Environ. Sci. Technol., 50, 11888, 2016
  114. Yang Y, Kao LC, Liu Y, Sun K, Yu H, Guo J, Liou SYH, Hoffmann MR, ACS Catal., 8, 4278, 2018
  115. Ahmadi A, Wu T, Environ. Sci.: Water Res. Technol., 3, 534, 2017
  116. Shi Y, Lu ZX, Guo LL, Wang ZD, Guo CQ, Tan HY, Yan CF, Int. J. Hydrog. Energy, 43(19), 9133, 2018
  117. Han J, Choi H, Lee G, Tak Y, Yoon J, J. Electrochem. Sci. Technol., 7, 76, 2016
  118. Maltanava H, Poznyak S, Starykevich M, Ivanovskaya M, Electrochim. Acta, 222, 1013, 2016
  119. Liao W, Murugananthan M, Zhang Y, Phys. Chem. Chem. Phys., 17, 8877, 2015
  120. Zhang X, Zhang B, Huang D, Yuan H, Wang M, Shen Y, Carbon, 80, 591, 2014
  121. Yu L, Li M, Huang C, Zhang Y, He J, Zhou X, Zhu H, Mater. Lett., 216, 239, 2018
  122. Koo MS, Cho K, Yoon J, Choi W, Environ. Sci. Technol., 51, 6590, 2017