Issue
Korean Journal of Chemical Engineering,
Vol.36, No.5, 789-799, 2019
Networked column compartment model for a tilted packed column with structured packing
To successfully implement floating liquefied natural gas technology (FLNG), the separation columns on the topside of FLNG must be optimally designed. To this end, a reliable model that can predict column performance in offshore environments is needed. In this study, a networked column compartment model (NCCM), based on 2D-liquid and gas distribution models (LGDM), was proposed as a reliable offshore column model. A pilot-scale experiment for a column with structured packing was conducted to obtain experimental data regarding the absorption performance of the column in offshore environments. The results of the NCCM were compared with the experimental data. With the aid of the developed model, the effect of tilt angles on absorption performance and packed height was quantified.
[References]
  1. Park K, Won W, Shin D, J. Nat. Gas. Sci. Eng., 34, 958, 2016
  2. Tesch S, Morosuk T, Tsatsaronis G, Energy, 117, 550, 2016
  3. Zhang HR, Liang YT, Liao Q, Yan XH, Shen Y, Zhao YB, Energy, 133, 424, 2017
  4. Won W, Lee SK, Choi K, Kwon Y, Korean J. Chem. Eng., 31(5), 732, 2014
  5. Zhao WH, Yang JM, Hu ZQ, Wei YF, Ocean. Eng., 38, 1555, 2011
  6. Son Y, Won W, Chem. Eng. Sci., 195, 894, 2019
  7. Lee J, Kim J, Kim H, Lee KS, Won W, J. Nat. Gas. Sci. Eng., 61, 206, 2019
  8. Lee J, Son Y, Lee KS, Won W, Energies, 12, 852, 2019
  9. Billingham JE, Lockett MJ, Chem. Eng. Res. Des., 80(4), 373, 2002
  10. Cullinane JT, Yeh N, Grave E, Brasil Offshore Conference and Exhibition, Macae, Brazil, SPE (2011).
  11. Klemas L, Bonilla JA, Chem. Eng. Prog., 91(7), 27, 1995
  12. Mullin JW, Chem. Eng. Prog., 33, 408, 1957
  13. Schultes M, Ind. Eng. Chem. Res., 39(5), 1381, 2000
  14. Stichlmair J, Stemmer A, Inst. Chem. Eng. Symp. Ser., 104, 213, 1987
  15. Hanley B, Sep. Purif. Technol., 16(1), 7, 1999
  16. Manning RE, Cannon MR, Ind. Eng. Chem., 49, 347, 1957
  17. Iliuta I, Larachi F, AIChE J., 63(3), 1064, 2017
  18. Pham DA, Lim YI, Jee H, Ahn E, Jung Y, AIChE J., 61(12), 4412, 2015
  19. Son Y, Lee S, Han S, Yang D, Min K, Lee KS, Chem. Eng. Sci., 182, 1, 2018
  20. Billet R, Schultes M, Chem. Eng. Res. Des., 77(6), 498, 1999
  21. Tsai RE, Thesis D. The University of Texas at Austin (2010).
  22. Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55(22), 5531, 2000
  23. Danckwerts PV, Lannus A, J. Electrochem. Soc., 117, 369C, 1970
  24. Haubrock J, Hogendoorn JA, Versteeg GF, Int. J. Chem. React. Eng., 3, 1, 2005
  25. Kucka L, Kenig EY, Gorak A, Ind. Eng. Chem. Res., 41(24), 5952, 2002
  26. Tsai RE, Seibert AF, Eldridge RB, Rochelle GT, AlChE J., 57, 1173, 2011
  27. Pohorecki R, Moniuk W, Chem. Eng. Sci., 43, 1677, 1988
  28. Moniuk W, Pohorecki R, Hung. J. Ind. Chem., 19, 175, 1991
  29. Barrett PVL, Thesis D, University of Cambridge (1969).
  30. Won W, Kim J, Comput. Chem. Eng., 96, 87, 2017
  31. Won W, Lee KS, Chem. Eng. Sci., 162, 21, 2017
  32. Son Y, Kim G, Lee S, Kim H, Min K, Lee KS, Chem. Eng. Sci., 166, 168, 2017
  33. Perry D, Nutter DE, Hale A, Chem. Eng. Prog., 86, 30, 1990