Issue
Korean Journal of Chemical Engineering,
Vol.36, No.5, 729-739, 2019
Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine
Racemic 1-phenylethylamine was resolved by enantiomer selective acetylation using Fe3O4-chitosan microsphere (CTS)-glutaraldehyde-lipase in a solvent-free system under an alternating magnetic field. Magnetic chitosan microspheres (Fe3O4-CTS) were prepared via chemical co-precipitation and cross-linked with lipase using glutaraldehyde to form Fe3O4-CTS-glutaraldehyde-lipase particles. The magnetic, physicochemical, and textural characteristics of Fe3O4-CTS-glutaraldehyde-lipase particles were assessed by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The optimal immobilization conditions were 2.4mg/mL lipase, 10mg/mL Fe3O4- CTS-glutaraldehyde, pH 8.5, 35 oC, 3 h. The loading amount of lipase and the specific activity got to 132mg/g carrier and 48U/g. The optimal reaction conditions of the acylation reaction using Fe3O4-CTS-glutaraldehyde-lipase were 300mmol/L 1-phenylethylamine, 150mg immobilized lipase, 2mL vinyl acetate, 12.6 ⊥g rotating speed, 40 oC, 8 h. The activity of the Fe3O4-CTS-glutaraldehyde-lipase particles and conversion were improved when they were exposed to an external alternating magnetic field. The optimum magnetic field was 12 Gs (500 Hz). The conversion, enantiomeric excess of (R)-N-(1-phenylethyl)acetamide, and E value reached 41.8%, 98.4%, and 264, respectively. Fe3O4-CTS-glutaraldehyde- lipase could be reused seven times. A kinetic model of the immobilized lipase-catalyzed resolution of 1- phenylethylamine was set up based on the ping-pong bi좻bi mechanism. The kinetic constants were Vmax=1.62⊥10?2 mM/min, KA=2.84⊥10?4mM, and KB=5.8⊥10?1mM. The model data fit well with the experimental data.
[References]
  1. Cammenberg M, Hult K, Park S, Chembiochem, 7(11), 1745, 2006
  2. Boezio AA, Pytkowicz J, Cote A, Charette AB, J. Am. Chem. Soc., 35(12), 14260, 2004
  3. Hanson RL, Davis BL, Chen YJ, Goldberg SL, Parker WL, Tully TP, Montana MA, Patal RN, Adv. Synth. Catal., 350, 1367, 2008
  4. Artis DR, Cho IS, Muchowski JM, Can. J. Chem., 70(6), 1838, 2010
  5. Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee JH, Chang JS, Jhung SH, Ferey G, Angew. Chem.-Int. Edit., 45(48), 8227, 2010
  6. Altava B, Burguete MI, Carbo N, Escorihuela J, Luis SV, Tetrahedron. Asymmetr., 21, 982, 2010
  7. Jaeger KE, Eggert T, Curr. Opin. Biotechnol., 13(4), 390, 2002
  8. Hasan F, Shah AA, Hameed A, Enzyme Microb. Technol., 39(2), 235, 2006
  9. Jaeger KE, Reetz MT, Trends Biotechnol., 16(9), 396, 1998
  10. Yahya ARM, Anderson WA, Moo-Young M, Enzyme Microb. Technol., 23(7-8), 438, 1998
  11. Allenmark S, Ohlsson A, Chirality, 4(2), 98, 1992
  12. Wu JC, Hou RL, Leng Y, Chow Y, Li RJ, Talukder MMR, Choi WJ, Biotechnol. Bioproc. E, 11(3), 211, 2006
  13. Ditrich K, Cheminform., 39(46), 2283, 2008
  14. Adnani A, Basri M, Chaibakhsh N, Carbohydr. Res., 346(4), 472, 2011
  15. Mustafa A, Karmali A, Abdelmoez W, J. Clean Prod., 137, 953, 2016
  16. Jaiswal KS, Rathod VK, Ultrason. Sonochem., 40(PtA), 727, 2018
  17. Uthoff F, Reimer A, Liese A, Groger H, Sustain Chem. Pharm., 5, 42, 2017
  18. Gilani SL, Najafpour GD, Moghadamnia A, Kamaruddin AH, J. Mol. Catal. B-Enzym., 133, 144, 2016
  19. Xie WL, Wang JL, Biomass Bioenerg., 36, 373, 2012
  20. Romdhane BB, Romdhane ZB, Gargouri A, Belghith H, J. Mol. Catal. B-Enzym., 68(3-4), 230, 2011
  21. Talbert JN, Wang LS, Duncan B, Jeong Y, Andler SM, Rotello VM, Goddard JM, Biomacromolecules, 15(11), 3915, 2014
  22. Qu ZY, Hu FL, Chen KM, Duan ZQ, Gu HC, Xu H, J. Colloid Interface Sci., 398, 82, 2013
  23. Hwang ET, Gu MB, Eng. Life Sci., 13(1), 49, 2013
  24. Ye P, Xu ZK, Che AF, Wu J, Seta P, Biomaterials, 26(25), 6394, 2005
  25. Romdhane BB, Romdhane ZB, Gargouri A, Belghith H, J. Mol. Catal. B-Enzym., 68(3-4), 230, 2011
  26. Manzano MFG, Igarzabal CIA, J. Mol. Catal. B-Enzym., 72(1-2), 28, 2011
  27. Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW, Int. J. Biol. Macromol., 75, 44, 2015
  28. Noureddini H, Gao X, Philkana RS, Bioresour. Technol., 96(7), 769, 2004
  29. Kuo CH, Liu YC, Chang CMJ, Chen JH, Chang C, Shieh CJ, Carbohydr. Polym., 87(4), 2538, 2012
  30. Dodi G, Hritcu D, Lisa G, Popa MI, Chem. Eng. J., 203, 130, 2012
  31. Bayramoglu G, Yilmaz M, Yakup AM, Bioprocess. Biosyst. Eng., 33(4), 439, 2010
  32. Tavano OL, Fernandez-Lafuente R, Goulart AJ, Monti R, Process Biochem., 48(7), 1054, 2013
  33. Bezbradica DI, Mateo C, Guisan JM, J. Mol. Catal. B-Enzym., 102(14), 218, 2014
  34. Zhi J, Wang YJ, Lu YC, Ma JY, Luo GS, React. Funct. Polym., 66(12), 1552, 2006
  35. Denkbas EB, Kilicay E, Birlikseven C, Ozturk E, React. Funct. Polym., 50(3), 225, 2002
  36. Xie WL, Wang JL, Biomass Bioenerg., 36, 373, 2012
  37. Ting WJ, Tung KY, Giridhar R, Wuw T, J. Mol. Catal. B-Enzym., 42(1), 32, 2006
  38. Gros F, Baup S, Aurousseau M, Powder Technol., 183(2), 152, 2008
  39. Zheng MG, Su ZG, Ji XY, Ma GH, Wang P, Zhang SP, J. Biotechnol., 168, 212, 2013
  40. XJ, Schellekens AJ, van Ommering K, van Ijzendoorna LJ, Prins MW, Biosens. Bioelectron., 24(7), 1937, 2009
  41. Guo PM, Huang FH, Huang QD, Zheng C, J. Am. Oil Chem. Soc., 55, 561, 2013
  42. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ, J. Am. Chem. Soc., 104(25), 7294, 1982
  43. Bradford MM, Anal. Biochem., 72(s1-2), 248, 1976
  44. Baghban A, Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Int. J. Biol. Macromol., 103, 1194, 2017
  45. Pan CL, Hu B, Li W, Sun Y, Ye H, Zeng XX, J. Mol. Catal. B-Enzym., 61(3-4), 208, 2009
  46. Zhang QK, Kang JQ, Yang B, Zhao LZ, Hou ZS, Tang B, Chinese. J. Catal., 37(3), 389, 2016
  47. Yadav GD, Trivedi AH, Enzyme Microb. Technol., 32(7), 783, 2003
  48. Paivio M, Perkio P, Kanerva LT, Tetrahedron: Asymmetry, 23(3-4), 230, 2012