Issue
Korean Journal of Chemical Engineering,
Vol.36, No.5, 660-668, 2019
Decomposition of ammonium dinitramide-based liquid propellant over Cu/hexaaluminate pellet catalysts
We investigated the influence of a copper loading strategy over hexaaluminate on catalytic performance during the decomposition of an ammonium dinitramide (ADN)-based liquid propellant. Powder-type and pellet-type Cu/hexaaluminate catalysts were prepared and their chemico-physical properties were characterized by N2 adsorption, XRD, and XRF. A Cu-hexa-pellet-A catalyst in which copper atoms are positioned inside the hexaaluminate matrix showed the lowest decomposition onset temperature in decomposition of an ADN-based propellant. The excellent activity of the Cu-hexa-pellet-A catalyst is ascribed to copper being well incorporated in the hexaaluminate matrix, and the dispersion of the copper is higher than that in two other catalysts. When a thermal shock was applied at a high temperature of 1,200 °C prior to catalyst reuse, physical properties such as surface area, average pore diameter, and the compressive strength of the fresh catalyst did not deteriorate remarkably after five times repetitive reuse and heat treatment. Consequently, the Cu-hexa-pellet-A catalyst was confirmed to be a catalyst that has excellent activity and heat resistance simultaneously in decomposition of an ADN-based propellant.
[References]
  1. Nobuhiko T, Tetsuya M, Katsumi F, Mitsuru N, Shigenori S, Akinori Y, Mitsubishi Heavy Ind. Tech. Rev., 48, 44, 2011
  2. McLean CH, Deininger WD, Joniatis J, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2014-3481, 1 (2014).
  3. Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S, Procedia Eng., 99, 332, 2015
  4. Amrousse R, Katsumi T, Itouyama N, Azurna N, Kagawa H, Hatai K, Ikeda H, Hori K, Combust. Flame, 162(6), 2686, 2015
  5. Wingborg N, Larsson A, Elfsberg M, Appelgren P, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2005-4468, 1 (2005).
  6. Jang HG, Sul MJ, Shim JS, Park YC, Cho SJ, J. Ind. Eng. Chem., 63, 237, 2018
  7. Yang R, thakre P, Yang V, Combust. Explo. Shock Waves, 41, 657, 2005
  8. Kleimark J, Delanoe R, Demaire A, Brinck T, Theor. Chem. Acc., 132, 1, 2013
  9. Courtheoux L, Amariei D, Rossignol S, Kappenstein C, Appl. Catal. B: Environ., 62(3-4), 217, 2006
  10. Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(31), 5653, 1997
  11. Gronland TA, Westerberg B, Bergman G, Anflo K, Brandt J, Lyckfeldt O, Agrell J, Ersson A, Jaras S, Boutonnet M, Wingborg N, US Patent, 7,137,244 B2 (2006).
  12. Amrousse R, Hori K, Fetimi W, Farhat K, Appl. Catal. B: Environ., 127, 121, 2012
  13. Heo S, Hong S, Jeon BK, Li C, Kim JM, Jo YM, Kim W, Jeon JK, J. Nanosci. Nanotechnol., 18, 353, 2018
  14. Hong S, Heo S, Li C, Jeon BK, Kim JM, Jo YM, Kim W, Jeon JK, J. Nanosci. Nanotechnol., 18, 1427, 2018
  15. Machida M, Eguchi K, Arai H, J. Catal., 120, 377, 1989
  16. Sidwell RW, Zhu HY, Kee RJ, Wickham DT, Combust. Flame, 134(1-2), 55, 2003
  17. Hong S, Heo S, Kim W, Jo YM, Park YK, Jeon JK, Catalysts, 9, 80, 2019
  18. Gardner TH, Shekhawat D, Berry DA, Smith MW, Salazar M, Kugler EL, Appl. Catal. A: Gen., 323, 1, 2007
  19. Machida M, Eguchi K, Arai H, J. Catal., 123, 477, 1990
  20. Tian M, Wang XD, Zhang T, Catal. Sci. Technol., 6, 1984, 2016
  21. Lietti L, Cristiani C, Groppi G, Forzatti P, Catal. Today, 59(1-2), 191, 2000
  22. Jang BWL, Nelson RM, Spivey JJ, Ocal M, Oukaci R, Marcelin G, Catal. Today, 47(1-4), 103, 1999
  23. Yeh TF, Lee HG, Chu KS, Wang CB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 384, 324, 2004
  24. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051, 2015
  25. Kim S, Lee DW, Lee JY, Eom HJ, Lee HJ, Cho IH, Lee WY, J. Mol. Catal. A-Chem., 335(1-2), 60, 2011
  26. Sohn JM, Woo SI, Korean Chem. Eng. Res., 45(3), 209, 2007