Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 500-504, 2019
Performance evaluation of glucose oxidation reaction using biocatalysts adopting different quinone derivatives and their utilization in enzymatic biofuel cells
Glucose oxidase (GOx) and four different quinone derivatives (p-benzoquinone (BQ), naphthoquinone (NQ), anthraquinone (AQ) and 1,5-Dihydroxyanthraquinone (15DHAQ)) based biocomposites were embedded in polyethyleneimine (PEI) and then immobilized on carbon nanotube (CNT) substrate (CNT/PEI/Quinone/GOx). These catalysts were then used as the anodic biocatalysts for the enzymatic biofuel cell (EBC). According to the performance investigations of catalysts, the catalytic activity for glucose oxidation reaction (GOR) representing the electron transfer rate between GOx and glucose fuel is mostly enhanced in CNT/PEI/NQ/GOx. It is because two benzene rings of NQ play a role in attracting and releasing electrons effectively, increasing the catalytic activity for GOR, while other quinones have problems about attracting electrons (AQ and 15DHAQ) and wrong position of the reactive site for electron transfer (BQ). Excellent electron transfer rate constant (1.1 s?1) and Michaelis-Menten constant (0.99mM) are outstanding evidence for that. Furthermore, when the catalyst is utilized for EBC, high power density (57.4 꺷Wcm?2) and high open circuit voltage (0.64 V) are accomplished.
[References]
  1. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197, 2015
  2. Minteer SD, Liaw BY, Cooney MJ, Curr. Opin. Biotechnol., 18, 228, 2007
  3. Abreu C, Nedellec Y, Ondel O, Buret F, Cosnier S, Le Goff A, Holzinger M, J. Power Sources, 392, 176, 2018
  4. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199, 2015
  5. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916, 2017
  6. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752, 2013
  7. Sulka M, Pitonak M, Neogrady P, Urban M, Int. J. Quantum Chem., 108, 2159, 2008
  8. Driver N, Jena P, Int. J. Quantum Chem., 118, e25504, 2018
  9. Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJ, Phys. Chem. Chem. Phys., 14, 7384, 2012
  10. Bunte C, Hussein L, Urban GA, J. Power Sources, 247, 579, 2014
  11. Nazaruk E, Smolinski S, Swatko-Ossor M, Ginalska G, Fiedurek J, Rogalski J, Bilewicz R, J. Power Sources, 183(2), 533, 2008
  12. Wang Y, Hasebe Y, J. Electrochem. Soc., 159, 110, 2012
  13. Conant JB, Fieser LF, J. Am. Chem. Soc., 46, 1858, 1924
  14. Latifatu M, Park JH, Ko JM, Park JW, J. Ind. Eng. Chem., 63, 12, 2018
  15. Yuan E, Wu C, Liu G, Li G, Wang L, J. Ind. Eng. Chem., 66, 158, 2018
  16. Gorner H, Photochem. Photobiol. Sci., 3, 933, 2004
  17. Lee MJ, Chun NH, Kim HC, Kim MJ, Kim P, Cho MY, Choi GJ, Korean J. Chem. Eng., 35(4), 984, 2018
  18. Nawar S, Huskinson B, Aziz M, Mater. Res. Soc. Symp. Proc., 1491, 2013
  19. Uchimiya M, Stone AT, Chemosphere, 77, 451, 2009
  20. Milton DP, Hickey DP, Abdellaoui S , Lim K, Wu F, Tan B, Minteer SD, Chem. Sci., 6, 4867, 2015
  21. Ji J, Joh HI, Chung Y, Kwon Y, Nanoscale, 9, 15998, 2017
  22. Chung Y, Hyun K, Kwon Y, Nanoscale, 8, 1161, 2016
  23. Razzaghi M, Karimi A, Aghdasinia H, Joghataei MT, Korean J. Chem. Eng., 34(11), 2870, 2017
  24. Im YO, Lee SH, Yu SU, Lee J, Lee KH, Korean J. Chem. Eng., 34(3), 898, 2017
  25. Hwang KS, Park HY, Kim JH, Lee JY, Korean J. Chem. Eng., 35(3), 798, 2018
  26. Adewunmi AA, Ismail S, Sultan AS, Ahmad Z, Korean J. Chem. Eng., 34(6), 1638, 2017
  27. Ahn Y, Chung Y, Kwon Y, Korean Chem. Eng. Res., 55(2), 258, 2017
  28. Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329, 2018
  29. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334, 2017
  30. Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26, 2018