Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 456-467, 2019
Reactive insights into the hydrogen production from ammonia borane facilitated by phosphonium based ionic liquid
The current work presents a mechanistic insight of hydrogen production from ammonia borane (AB) facilitated by the phosphonium based ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis (2,4,4-trimethylpentyl) phosphinate ([TDTHP][Phosph]). Prior to experiments, the IL was screened from a pool of 11 phosphonium ILs with the infinite dilution activity coefficients (IDAC) values as predicted by conductor like screening model segment activity coefficient (COSMO-SAC) theory. Thereafter, a dehydrogenation experiment of AB/[TDTHP][Phosph] was carried out at 105 °C and 4 x10-2mbar of gauge pressure, which yielded 2.07 equivalent hydrogen production. At higher temperature, the 11B NMR characterization shows the suppression of induction period at 105 °C and appearance of borohydride anion after 1 min of dehydrogenation. Further, time-resolved characterization of AB/[TDTHP][Phosph] at 105 °C confirmed the appearance of polymeric aminoborane after 10min with a subsequent formation of polyborazylene. HR-MS characterization coupled with 1H resonance spectrum confirmed structural integrity of IL. The dual characterization of NMR and HR-MS led us to propose a dehydrogenation mechanism of AB/[TDTHP][Phosph] system.
[References]
  1. Richardson TB, Degala S, Crabtree RH, Siegbahn PE, J. Am. Chem. Soc., 117(51), 12875, 1995
  2. Li JS, Zhao F, Jing FQ, J. Chem. Phys., 116(1), 25, 2002
  3. Al-Kukhun A, Hwang HT, Varma A, Ind. Eng. Chem. Res., 50(15), 8824, 2011
  4. Cinti G, Frattini D, Jannelli E, Desideri U, Bidini G, Appl. Energy, 192, 466, 2017
  5. Stephens FH, Pons V, Baker RT, Dalton Trans., 2613 (2007).
  6. Rossin A, Peruzzini M, Chem. Rev., 116(15), 8848, 2016
  7. Gutowska A, Li L, Shin Y, Wang CM, Li XS, Linehan JC, Smith RS, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T, Angew. Chem.-Int. Edit., 44, 5378, 2005
  8. Jiang HL, Xu Q, Catal. Today, 170(1), 56, 2011
  9. Himmelberger DW, Alden LR, Bluhm ME, Sneddon LG, Inorg. Chem., 48(20), 9883, 2009
  10. Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG, Chem. Rev., 108(6), 2015, 2008
  11. Welton T, Chem. Rev., 99(8), 2071, 1999
  12. Vrikkis RM, Fraser JK, Fujita K, MacFarlane DR, Elliott GD, J. Biomech. Eng., 131, 074514, 2009
  13. Manohar CV, Rabari D, Kumar AAP, Banerjee T, Mohanty K, Fluid Phase Equilib., 360, 392, 2013
  14. Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG, J. Am. Chem. Soc., 128(24), 7748, 2006
  15. Nakagawa T, Burrell AK, Del Sesto RE, Janicke MT, Nekimken AL, Purdy GM, Paik B, Zhong RQ, Semelsberger TA, Davis BL, RSC Adv., 4, 21681, 2014
  16. Ahluwalia RK, Peng JK, Hua TQ, Int. J. Hydrog. Energy, 36(24), 15689, 2011
  17. Mahato S, Banerjee B, Pugazhenthi G, Banerjee T, Int. J. Hydrog. Energy, 40(33), 10390, 2015
  18. Valero-Pedraza MJ, Martin-Cortes A, Navarrete A, Bermejo MD, Martin A, Energy, 91, 742, 2015
  19. Gatto S, Palumbo O, Trequattrini F, Paolone A, J. Therm. Anal. Calorim., 129, 663, 2017
  20. Sahiner N, Alpaslan D, J. Appl. Polym. Sci., 131, 40183, 2014
  21. Wright WRH, Berkeley ER, Alden LR, Baker RT, Sneddon LG, Chem. Commun., 47, 3177, 2011
  22. Mal SS, Stephens FH, Baker RT, Chem. Commun., 47, 2922, 2011
  23. Rekken BD, Carre-Burritt AE, Scott BL, Davis BL, J. Mater. Chem. A, 2, 16507, 2014
  24. Blundell RK, Licence P, Phys. Chem. Chem. Phys., 16, 15278, 2014
  25. Atefi F, Garcia MT, Singer RD, Scammells PJ, Green Chem., 11, 1595, 2009
  26. Del Sesto RE, Corley C, Robertson A, Wilkes JS, J. Organomet. Chem., 690, 2536, 2005
  27. Frackowiak E, Lota G, Pernak J, J. Appl. Phys. Lett., 86, 164104, 2005
  28. Tsunashima K, Sugiya M, Electrochem. Commun., 9, 2353, 2007
  29. Bradaric CJ, Downard A, Kennedy C, Robertson AJ, Zhou Y, Green Chem., 5, 143, 2003
  30. Zhang C, Xin B, Xi Z, Zhang B, Li Z, Zhang H, Li Z, Hao J, ACS Sustainable Chem. Eng., 6, 1468, 2018
  31. Shia Y, Zhang B, Chem. Soc. Rev., 45, 1529, 2016
  32. Callejas JF, Read CG, Roske CW, Lewis NS, Schaak RE, Chem. Mater., 28, 6017, 2016
  33. Dennington R, Keith T, Millam J, GaussView (Version 5), Semichem Inc., Shawnee Mission, KS (2009).
  34. Frisch MJ, et al., Gaussian 09 (Revision D.01), Wallingford, CT (2013).
  35. Becke AD, J. Chem. Phys., 98, 5648, 1993
  36. Lee C, Yang W, Parr RG, Phys. Rev. B, 37, 785, 1988
  37. Perdew JP, Phys. Rev. B, 33, 8822, 1986
  38. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA, J. Phys. Chem., 96, 6630, 1992
  39. Schafer A, Horn H, Ahlrichs R, Chem. Phys., 97, 2571, 1992
  40. Bharti A, Kundu D, Rabari D, Banerjee T, Phase equilibria in ionic liquid facilitated liquid-liquid extractions, CRC Press, New York (2017).
  41. Kundu D, Banerjee B, Pugazhenthi G, Banerjee T, Int. J. Hydrog. Energy, 42(5), 2756, 2017
  42. Kundu D, Chakma S, Pugazhenthi G, Banerjee T, ACS Omega, 3, 2273, 2018
  43. Stowe AC, Shaw WJ, Linehan JC, Schmid B, Autrey T, Phys. Chem. Chem. Phys., 9, 1831, 2007
  44. Smythe NC, Gordon JC, Eur. J. Inorg. Chem., 210, 509, 2010
  45. Sahler S, Sturm S, Kessler MT, Prechtl MHG, Chem. Eur. J., 20, 8934, 2014