Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 450-455, 2019
Synthesis of fly ash-based microporous copper silicate for CO2 capture from humid flue gases
Conventional microporous adsorbents suffer from CO2 adsorption capacity reduction due to the presence of water vapor in real flue gases. Therefore, development of low-cost moisture-insensitive adsorbents is of great significance. In the present work, microporous copper silicate was synthesized from waste fly ash for the first time. The synthesis conditions were further optimized to obtain copper silicates with high purities. The as-synthesized product was characterized in terms of structural morphology, chemical composition, and surface properties. The CO2 and H2O adsorption properties of the prepared copper silicate were also investigated by single-component isotherm measurements and dynamic CO2/H2O binary breakthrough experiments. The results show that the as-synthesized fly ash-based copper silicate exhibited excellent CO2 adsorption properties even in the presence of water vapor, thus demonstrating promising potential as a moisture-insensitive adsorbent for directly capturing CO2 from humid flue gases.
[References]
  1. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR, Chem. Rev., 12, 24, 2012
  2. Tuinier MJ, Annaland MV, Kramer GJ, Kuipers JAM, Chem. Eng. Sci., 65(1), 114, 2010
  3. Shang J, Li G, Singh R, Xiao P, Liu JZ, Webley P, J. Phys. Chem. C, 117, 12841, 2013
  4. Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES, J. Clean Prod., 103, 286, 2015
  5. Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321, 2005
  6. He X, Hagg MB, Membranes, 2, 706, 2012
  7. Xu D, Xiao P, Zhang J, Li G, Xiao GK, Webley PA, Zhai YC, Chem. Eng. J., 230, 64, 2013
  8. Shen C, Yu J, Li P, Grande CA, Rodrigues AE, Adsorption, 17, 179, 2010
  9. Zhao QH, Wu F, Xie K, Singh R, Zhao JH, Xiao P, Webley PA, Chem. Eng. J., 336, 659, 2018
  10. Webley PA, Zhang J, Adsorption, 20, 201, 2014
  11. Rodrigo SG, Youssef B, Abdelhamid S, Adsorption, 16, 567, 2010
  12. Peng X, Wang WC, Xue RS, Shen ZM, AIChE J., 52(3), 994, 2006
  13. Saha D, Bao Z, Jia F, Deng S, Environ. Sci. Technol., 44, 1820, 2010
  14. Lozinska MM, Mangano E, Mowat JPS, Shepherd AM, Howe RF, Thompson SP, Parker JE, Brandani S, Wright PA, J. Am. Chem. Soc., 134(42), 17628, 2012
  15. Shang J, Li G, Singh R, Gu QF, Nairn KM, Bastow TJ, Medhekar N, Doherty CM, Hill AJ, Liu JZ, Webley PA, J. Am. Chem. Soc., 134(46), 19246, 2012
  16. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma SQ, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ, Nature, 495(7439), 80, 2013
  17. Shekhah O, Belmabkhout Y, Chen ZJ, Guillerm V, Cairns A, Adil K, Eddaoudi M, Nat. Commun., 5, 4228, 2014
  18. Xiang SC, He YB, Zhang ZJ, Wu H, Zhou W, Krishna R, Chen BL, Nat. Commun., 3, 954, 2012
  19. Wang Y, Levan MD, J. Chem. Eng. Data, 55(9), 3189, 2010
  20. Rege SU, Yang RT, Buzanowski MA, Chem. Eng. Sci., 55(21), 4827, 2000
  21. Datta SJ, Khumnoon C, Lee ZH, Moon WK, Docao S, Nguyen TH, Hwang IC, Moon D, Oleynikov P, Terasaki O, Yoon KB, Science, 350(6258), 302, 2015
  22. Li G, Xiao P, Zhang J, Webley PA, Xu D, AIChE J., 60(2), 673, 2014
  23. Du T, Fang X, Wei YC, Shang J, Zhang B, Liu LY, Energy Fuels, 31(4), 4301, 2017
  24. Wang Y, Du T, Fang X, Meng D, Li G, Liu L, Korean J. Chem. Eng., 35(8), 1642, 2018
  25. Liu LY, Singh R, Li G, Xiao P, Webley P, Zhai YC, J. Hazard. Mater., 195, 340, 2011
  26. Li G, Xiao P, Webley P, Langmuir, 25(18), 10666, 2009