Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 423-432, 2019
Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis
This article proposes the use of mathematical models obtained by the Pearson correlation between the concentration of various recalcitrant organic compounds (ROCs) measured by chromatographic analysis (ChrA) and experimental chemical oxygen demand (COD). The aim is to reduce the number of samples processed by the ChrA, diminishing the economic costs of analysis. Ten ROCs, including pesticides, colorants, aromatic hydrocarbons and pharmaceuticals compounds, were introduced into four advanced oxidation processes operated at different residence times. Every ROC was tested at each residence time by COD determination and by quantification of concentrations with ChrA. Furthermore, chemical equations for the COD reaction of every ROC were formulated. A linear model was obtained for all the ROCs, after corroborating that the correlation between theoretical and experimental COD was >0.99, which established the ROC concentration from the experimental COD, omitting the ChrA. Results indicated that it is possible to know concentrations in most of the ROCs by means of the experimental COD with a >99±0.01% of accuracy, which leads to a cost decrease and even to evaluate methods in developing countries, which often do not have chromatographs and where pollution issues are meaningful.
[References]
  1. Zhang G, Mastalerz M, Chem. Soc. Rev., 43(6), 1934, 2014
  2. Carvalho FP, Food Energy Secur., 6(2), 48, 2017
  3. Jin H, Liu SK, Wei WW, Zhang DM, Cheng ZN, Guo LJ, Energy Fuels, 29(10), 6342, 2015
  4. Environmental Protection Agency of United States, https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response).
  5. Sander LC, Schantz MM, Wise SA, in Liquid Chromatography Applications, New York (2017).
  6. Schaider LA, Rodgers KM, Rudel RA, Environ. Sci. Technol., 51(13), 7304, 2017
  7. Barrera-Andrade JM, Garcia-M JA, Jimenez-G AE, Zanella-S R, Gelover-S LS, Duran-Dominguez-de-Bazua MC, J. Adv. Oxid. Technol., 17(1), 152, 2014
  8. Hardoy JE, Mitlin D, Satterthwaite D, Environmental problems in an urbanizing world, Abingdon-on-Thames, 464 (2013).
  9. Dean JM, International Trade and the Environment, 1st Ed., Taylor and Francis, London, 60 (2017).
  10. Li J, Luo G, He LJ, Xu J, Lyu J, Crit. Rev. Anal. Chem., 48(1), 47, 2018
  11. Geerdink RB, van den Hurk RS, Epema OJ, Anal. Chim. Acta, 961, 1, 2017
  12. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS, TrAC, Trends Anal. Chem., 66, 32, 2015
  13. Liu JL, Won MH, Environ. Int., 59, 208, 2013
  14. Liew WL, Kassim MA, Muda K, Loh SK, Affam AC, J. Environ., 149, 222, 2015
  15. Meffe R, de Bustamante I, Sci. Total Environ., 481, 280, 2014
  16. Klancar A, Trontelj J, Kristl A, Meglic A, Rozina T, Justin MZ, Roskar R, Ecol. Eng., 97, 186, 2016
  17. Ahmadi F, Assadi Y, Hosseini SM, Rezaee M, J. Chromatogr. A, 1101, 1, 2006
  18. Li HP, Li GC, Jen FJ, J. Chromatogr. A, 1012, 2, 2003
  19. Bianchin JN, Nardini G, Merib J, Dias AN, Martendal E, Carasek E, J. Chromatogr. A, 1233, 22, 2012
  20. Poinot P, Qin F, Lemoine M, Yvon V, Ledauphin J, Gaillard JL, J. Food Compos. Anal., 35(2), 83, 2014
  21. Kucharska M, Grabka J, Talanta, 80(3), 1045, 2010
  22. Santos JL, Aparicio I, Alonso E, Callejon M, Anal. Chim. Acta, 500(1-2), 116, 2005
  23. Rice EW, Baird RB, Eaton AD, Clesceri LS, Standard Methods for the Examination of Water and Wastewater, Denver, 1496 (2012).
  24. Manahan S, Environmental Chemistry, 10th Ed., CRC press, Boca Raton, FL, 752 (2017).
  25. Behloul M, Grib H, Drouiche N, Abdi N, Lounici H, Mameri N, Sep. Sci. Technol., 48(4), 664, 2013
  26. Fouad DM, Mohamed MB, J. Nanomater., 2012(2), 1, 2012
  27. Reddy PVL, Kim KH, J. Hazard. Mater., 285, 325, 2015
  28. Autin O, Hart J, Jarvis P, MacAdam J, Parsons SA, Jefferson B, Water Resour., 47(6), 2041, 2013
  29. Shah NS, He XX, Khan HM, Khan JA, O'Shea KE, Boccelli DL, Dionysiou DD, J. Hazard. Mater., 263, 584, 2013
  30. Oturan MA, Aaron JJ, Crit. Rev. Environ. Sci. Technol., 44(23), 2577, 2014
  31. Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT, Sci. Total Environ., 563, 1050, 2014
  32. Yang D, Qi S, Zhang J, Wu C, Xing X, Ecotoxicol. Environ. Saf., 89, 59, 2013
  33. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WW, J. Taiwan Inst. Chem. Eng., 45, 609, 2014
  34. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA, Chem. Eng. J., 228, 944, 2013
  35. Mohapatra DP, Brar SK, Tyagi RD, Picard P, Surampalli RY, Sci. Total Environ., 470, 58, 2014
  36. Liu X, Lv P, Yao G, Ma C, Tang Y, Wu Y, Yan Y, Colloids Surf. A: Physicochem. Eng. Asp., 441, 420, 2014
  37. Ramteke LP, Gogate PR, Process Saf. Environ. Protect., 95, 146, 2015
  38. Cheng ZW, Feng L, Chen JM, Yu JM, Jiang YF, J. Hazard. Mater., 254, 354, 2013
  39. Zhang Y, Guo CS, Xu J, Tian YZ, Shi GL, Feng YC, Water Res., 46(9), 3065, 2012
  40. Singh P, Mondal K, Sharma A, J. Colloid Interface Sci., 394, 208, 2013
  41. Buthiyappan A, Aziz ARA, Daud WMAW, Rev. Chem. Eng., 32(1), 1, 2014
  42. Borba FH, Modenes AN, Espinoza-Quinones FR, Manenti DR, Bergamasco R, Mora ND, Environ. Technol., 34, 653, 2013
  43. Hai FI, Yamamoto K, Fukushi K, Crit. Rev. Environ. Sci. Technol., 374(4), 315, 2007
  44. Amaral FM, Kato MT, Florencio L, Gavazza S, Bioresour. Technol., 163, 364, 2014
  45. Bahrami M, Nezamzadeh-Ejhieh A, Mater. Sci. Semicond. Process, 30, 275, 2015
  46. Nezamzadeh-Ejhieh A, Khodabakhshi-Chermahini F, J. Ind. Eng. Chem., 20(2), 695, 2014
  47. Hubner U, Seiwert B, Reemtsma T, Jekel M, Water Res., 49, 34, 2014
  48. Azmi Ayodele NHM, Vadivelu OB, Asif VM, Hameed BH, J. Taiwan Inst. Chem. Eng., 45, 1459, 2014
  49. Blanco J, Torrades F, Moron M, Brouta-Agnesa M, Garcia-Montano J, Chem. Eng. J., 240, 469, 2014
  50. Montgomery D, Jennings C, Introduction to Statistical Quality Control, 7th Ed., John Wiley & Sons Inc., London, 754 (2012).
  51. Berry BW, Martinez-Rivera MC, Tommos C, Proc. Natl Acad. Scie., 109(25), 9739, 2012
  52. Yang T, Zhang L, Wang A, Gao H, Inf. Sci., 235, 55, 2013
  53. Kwon M, Kim S, Yoon Y, Jung Y, Hwang TM, Lee J, Kang JW, Chem. Eng. J., 269, 379, 2015