Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 411-422, 2019
The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system
The experimental results and material balance analysis in this paper revealed the regularity of poly-hydroxy alkanoates (PHA) and total phosphorus (TP) metabolism in a continuous-flow single-sludge wastewater treatment system under different main anoxic section oxidation-reduction potential (ORPan) conditions. We also evaluated the effectiveness of the operation control parameters of ORPan as the continuous-flow single-sludge sewage treatment system from the aspect of the reaction mechanism. Using a programmable logic controller (PLC) automatic control system to take the circulating flow in nitrification as the controlled variable based on the feedback control structure, an experimental study was carried out under the condition of ORPan setting value of -143mV, -123mV, -105mV, -95mV, -72 mV and -57mV, respectively, with other operational design parameters remaining unchanged. Influent water quality of chemical oxygen demand/total nitrogen (COD/TN) was 5.0±0.6. The results showed that when ORPan was set at .95mV, the maximum values of PHA synthesis and storage rate, PHA degradation rate, phosphorus release rate and phosphorus absorption rate in anaerobic and pre-anoxic segments were 82.34, 7.90, 47.31, 14.27, 1.50 and 8.52mg/ (L·h), respectively. According to the metabolic mechanism of PHA and TP, ORPan was further proved to be the operation control parameter of the continuous-flow single-sludge sewage treatment system, and when the COD/TN value was 5.0±0.6, the optimal setting value was -95mV
[References]
  1. Sun Y, Chen Z, Wu GX, Wu QY, Zhang F, Niu ZB, Hu HY, J. Clean Prod., 131, 1, 2016
  2. Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF, Sci. Total Environ., 596-597, 303, 2017
  3. Guerrero J, Guisasola A, Baeza JA, Water Res., 45, 4793, 2011
  4. Zhu YX, Tu XJ, Chai XS, Wei Q, Guo LN, Bioresour. Technol., 251, 7, 2018
  5. Zeng W, Li L, Yang YY, Wang XD, Peng YZ, Enzyme Microb. Technol., 48(2), 134, 2011
  6. Yuan QY, Oieszkiewicz J, Desalination Water Treatment, 22, 72, 2010
  7. Kapagiannidis AG, Zafiriadis I, Aivasidis A, New Biotechnol., 30, 227, 2013
  8. Zou HM, Wang Y, Bioresour. Technol., 221, 87, 2016
  9. Souza SM, Araujo O, Coelho MAZ, Bioresour. Technol., 99(8), 3213, 2008
  10. Vaiopoulou E, Aivasidis A, Chemosphere, 72, 1062, 2008
  11. Duan JM, Li W, Zhao K, Krampe J, Desalination Water Treatment, 40, 24, 2012
  12. Peng L, Dai XH, Liu YW, Sun J, Song SX, Ni BJ, Chemosphere, 197, 430, 2018
  13. Bortone G, Libelli SM, Tilche A, Wanner J, Water Sci. Technol., 40, 177, 1999
  14. Wang J, Wang L, Cui E, Lu H, Korean J. Chem. Eng., 35(6), 1274, 2018
  15. Nancharaiah YV, Mohan SV, Lens PNL, Bioresour. Technol., 215, 173, 2016
  16. Cardete MA, Mata-Alvarez J, Dosta J, Nieto-Sanchez R, J. Environ. Chem. Eng., 5, 3472, 2017
  17. Wang XL, Yin J, Gao S, Environ. Sci., 33, 175, 2012
  18. Zhu GB, Peng YZ, Wang SY, Wu SY, Ma B, Chem. Eng. J., 131(1-3), 319, 2007
  19. Soares A, Kampas P, Maillard S, Wood E, Brigg J, Tillotson M, Parsons SA, Cartmell E, J. Hazard. Mater., 175(1-3), 733, 2010
  20. Bergendahl J, Stevens L, Environ. Progress, 24, 214, 2005
  21. Pagacova P, Blstakova A, Drtil M, Continually Measured ORP and pH Signal for Control of Nitrogen Removal, Springer Netherlands (2002).
  22. Ruano MV, Ribes J, Seco A, Ferrer J, Chem. Eng. J., 183, 212, 2012
  23. Ma Y, Peng YZ, Wang SY, China Environ. Sci., 25, 252, 2005
  24. Kim HT, Kim GS, Shin SW, Oh SH, Kim KH, KSCE J. Civil Eng., 9, 73, 2005
  25. Liu X, Chen QW, Zhu L, J. Environ. Sci., 47, 174, 2016
  26. Chuang SH, Ouyang CF, Water Res., 34, 2283, 2000
  27. Munchen IG, Braunschweig IK, Design of Single Stage Activated Sludge Wastewater Treatment Plant, GFA Publishing Company, Hennef (2000).
  28. Water Environment Federation, Design of Municipal Wastewater Treatment Plants, New York (2010).
  29. Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Code for design of outdoor wastewater engineering, China Planning Press, Beijing (2016).
  30. Wang XF, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub, Beijing (2002).
  31. Maizel AC, Remucal CK, Water Res., 122, 42, 2017
  32. Wang XL, Song TH, Yu XD, Desalination Water Treatment, 56, 1877, 2015
  33. Wang XL, Song TH, Yin Y, Environ. Sci., 36, 2617, 2015
  34. Caulet P, Bujon B, Philippe JP, Lefevre F, Audic JM, Water Sci. Technol., 37, 41, 1998
  35. Kuba T, van Loosdrechtt MCM, Water Sci. Technol., 27, 241, 1993
  36. Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, IWA Publishing, London (2010).
  37. Boontian N, Eng. Technol., 64, 984, 2012
  38. Bi DS, Guo XP, Chen DH, Water Sci. Technol., 67, 1953, 2013
  39. Kim MG, Nakhla G, Water Environ. Res., 82, 69, 2010
  40. Qi R, Yu T, Li ZL, Li D, J. Environ. Sci., 24, 571, 2012