Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 368-376, 2019
Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol
Oxidative steam reforming of methanol (OSRM) is autothermal and therefore well suited for hydrogen production. The exothermic part of OSRM generates heat at the reactor inlet to be used as the reaction heat for the endothermic methanol steam reforming in the rest of the reactor. With conventional particle catalysts, a hot spot is formed at the reactor inlet because of the poor thermal conductivity in the catalyst bed. The catalyst at the hot spot is deactivated by thermal sintering. Side reactions such as the reverse water gas shift reaction and methanol decomposition reaction become active at the hot spot. We developed a high-thermal-conductivity Al plate catalyst to suppress the formation of the hot spot in the catalyst bed during OSRM. In particular, a strongly bonded layer of anodic aluminum oxide as a catalyst support was grown on the Al plate surface via anodic oxidation in oxalic acid solution, and the internal surface area of the support was increased by pore widening and hot water treatments. To obtain a catalyst with high activity, multiple impregnations (>three times) and an anodization time of 24 h was needed. The catalyst was deactivated when operated at an elevated temperature of 623 K, but the activity was completely restored by a simple oxidation. Notably, OSRM was proven to be a combination of methanol combustion and methanol steam reforming reactions, and the kinetics of these two reactions were studied in detail.
[References]
  1. Golunski S, Energy Environ Sci., 3, 1918, 2010
  2. Bowers BJ, Zhao JL, Ruffo M, Khan R, Dattatraya D, Dushman N, Beziat JC, Boudjemaa F, Int. J. Hydrog. Energy, 32(10-11), 1437, 2007
  3. Lee JK, Park D, Korean J. Chem. Eng., 15(6), 658, 1998
  4. Kong SJ, Jun JH, Yoon KJ, Korean J. Chem. Eng., 21(4), 793, 2004
  5. Park JH, Lee D, Lee HC, Park ED, Korean J. Chem. Eng., 27(4), 1132, 2010
  6. de Wild PJ, Verhaak MJFM, Catal. Today, 60(1-2), 3, 2000
  7. Lee JK, Ko JB, Kim DH, Appl. Catal. A: Gen., 278(1), 25, 2004
  8. Iulianelli A, Ribeirinha P, Mendes A, Basile A, Renew. Sust. Energ. Rev., 29, 355, 2014
  9. Cubeiro ML, Fierro JLG, J. Catal., 179(1), 150, 1998
  10. Lin YC, Hohn KL, Stagg-Williams SM, Appl. Catal. A: Gen., 327(2), 164, 2007
  11. Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG, J. Catal., 219(2), 389, 2003
  12. Lattner JR, Harold MP, Catal. Today, 120(1), 78, 2007
  13. Tang HY, Greenwood J, Erickson P, Int. J. Hydrog. Energy, 40(25), 8034, 2015
  14. Twigg MV, Spencer MS, Top. Catal., 22, 191, 2003
  15. Cheng GJ, Yu AB, Zulli P, Chem. Eng. Sci., 54(19), 4199, 1999
  16. Wen DS, Ding YL, Chem. Eng. Sci., 61(11), 3532, 2006
  17. Kim DH, Lee J, Stud. Surf. Sci., 159, 685, 2006
  18. Masuda H, Fukuda K, Science, 268(5216), 1466, 1995
  19. Li AP, Muller F, Birner A, Nielsch K, Gosele U, J. Vac. Sci. Technol. A, 17(4), 1428, 1999
  20. Lee W, Park SJ, Chem. Rev., 114(15), 7487, 2014
  21. Mehmood M, Rauf A, Rasheed MA, Saeed S, Akhter JI, Ahmad J, Aslam M, Mater. Chem. Phys., 104(2-3), 306, 2007
  22. Alcala G, Skeldon P, Thompson G, Mann A, Habazaki H, Shimizu K, Nanotechnology, 13, 451, 2002
  23. Ganley JC, Riechmann KL, Seebauer EG, Masel RI, J. Catal., 227(1), 26, 2004
  24. Zhou L, Guo Y, Yagi M, Sakurai M, Kameyama H, Int. J. Hydrog. Energy, 34(2), 844, 2009
  25. Wang L, Tran TP, Vo DV, Sakurai M, Kameyama H, Appl. Catal. A: Gen., 350, 150, 2009
  26. Reddy EL, Karuppiah J, Lee HC, Kim DH, J. Power Sources, 268, 88, 2014
  27. Reddy EL, Lee HC, Kim DH, Int. J. Hydrog. Energy, 40(6), 2509, 2015
  28. Tran TP, Guo Y, Chen J, Zhou L, Sakurai M, Kameyama H, J. Chem. Eng. Jpn., 41(11), 1042, 2008
  29. Zhang JP, Kielbasa JE, Carroll DL, Mater. Chem. Phys., 122(1), 295, 2010
  30. Guo Y, Zhou L, Kameyama H, Chem. Eng. J., 168(1), 341, 2011
  31. Evans JW, Wainwright MS, Bridgewater AJ, Young DJ, Appl. Catal., 7, 75, 1983
  32. Fukuhara C, Ohkura H, Kamata Y, Murakami Y, Igarashi A, Appl. Catal. A: Gen., 273(1-2), 125, 2004
  33. Kim JH, Jang YS, Kim DH, Chem. Eng. J., 338, 752, 2018
  34. Marchi AJ, Fierro JL, Santamaria J, Monzon A, Appl. Catal. A: Gen., 142(2), 375, 1996
  35. Huang TJ, Chren SL, Appl. Catal., 40, 43, 1988
  36. Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T, Appl. Catal. A: Gen., 213(1), 47, 2001
  37. Espinosa LA, Lago RM, Pena MA, Fierro JLG, Top. Catal., 22, 245, 2003
  38. Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M, Appl. Catal. B: Environ., 77(1-2), 46, 2007
  39. Kim J, Byeon J, Seo IG, Lee HC, Kim DH, Lee J, Korean J. Chem. Eng., 30(4), 790, 2013
  40. Reitz TL, Ahmed S, Krumpelt M, Kumar R, Kung HH, J. Mol. Catal. A-Chem., 162(1-2), 275, 2000
  41. Agrell J, Boutonnet M, Fierro JLG, Appl. Catal. A: Gen., 253(1), 213, 2003