Issue
Korean Journal of Chemical Engineering,
Vol.36, No.3, 345-355, 2019
Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant
This study proposes a simple economic model to optimize the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant. The optimization was conducted with five different types of working fluids, and an exergetic optimization was also done for comparison. In addition, sensitivity analysis was conducted to provide better insight into the behavior of the ORC system. The optimization results show that the optimum economic point and the optimum exergetic point are different, and a maximum profit can be achieved for the ORC system with economic optimization. Overall, in most cases, the profit is highest when the ORC system uses n-butane; however, R152a yields better profit when the ambient temperature is below 5 oC. In addition, all ORC systems show positive profit when the price of electricity is above 0.05 USD/kWh. For sensitivity analysis, two simulation experiments were conducted to observe the effect of changes in the feed gas temperature and the sales price of electricity on the optimization results. As a result, changes in the sale price of electricity are very critical, but changes in the feed gas temperature are not important.
[References]
  1. Sugiura K, Naruse I, J. Power Sources, 106(1-2), 51, 2002
  2. Bove R, Moreno A, McPhail S, International status of molten carbonate fuel cell (MCFC) technology, JRC Scientific and Technical Reports (2008).
  3. McPhail SJ, Leto L, Pietra MD, Moreno V, International status of molten carbonate fuel cells technology, ENEA (2015).
  4. Yamamoto T, Furuhata T, Arai N, Mori K, Energy, 26(3), 239, 2001
  5. Desai NB, Bandyopadhyay S, Energy, 34(10), 1674, 2009
  6. Akkaya AV, Sahin B, Int. J. Energy Res., 33, 553, 2008
  7. Angelino G, di Paliano PC, Energy Conversion Engineering Conference and Exhibit, 2, 1400 (2000).
  8. Ji SW, Park SK, Kim TS, Transactions of the Korean Society of Mechanical Engineers B, 34, 907 (2010).
  9. Mamaghani AH, Najafi B, Shirazi A, Rinaldi F, Energy, 82, 650, 2015
  10. Ebrahimi M, Moradpoor I, Energy Conv. Manag., 116, 120, 2016
  11. Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH, Energy, 36(5), 3406, 2011
  12. Sanchez D, de Escalona JMM, Monje B, Chacartegui R, Sanchez T, J. Power Sources, 196(9), 4355, 2011
  13. Desideri A, Gusev S, van den Broek M, Lemort V, Quoilin S, Energy, 97, 460, 2016
  14. Sun Z, Wang S, Xu F, He W, Energy Procedia, 142, 1222, 2017
  15. Lee U, Han C, Comput. Chem. Eng., 83, 21, 2015
  16. Li W, Feng X, Yu LJ, Xu J, Appl. Therm. Eng., 31, 4014, 2011
  17. Sarkar J, Energy, 143, 141, 2018
  18. Wang E, Zhang H, Fan B, Wu Y, J. Mech. Sci. Technol., 26, 2301, 2012
  19. Wang MY, Khalilpour R, Abbas A, Energy Conv. Manag., 88, 947, 2014
  20. Quoilin S, Van Den Broek M, Declaye S, Dewallef P, Lemort V, Renew. Sust. Energ. Rev., 22, 168, 2013
  21. Patel B, Desai NB, Kachhwaha SS, Jain V, Hadia N, J. Clean Prod., 154, 26, 2017
  22. Asim M, Leung MKH, Shan Z, Li Y, Leung DYC, Ni M, Energy Procedia, 143, 192, 2017
  23. Xu G, Yu G, J. Comput. Appl. Math., 333, 65, 2018
  24. Chen Y, Li L, Xiao J, Yang Y, Liang J, Li T, Eng. Appl. Artif. Intell., 70, 159, 2018
  25. Tian D, Shi Z, Swarm Evol. Comput., 41, 49, 2018
  26. Gaing ZL, IEEE Trans. Energy Convers., 19(2), 384, 2004
  27. Park K, Won W, Shin D, J. Nat. Gas. Sci. Eng., 34, 958, 2016
  28. Godio A, Santilano A, J. Appl. Geophysics, 148, 163, 2018
  29. FuelCell Energy Solutions, http://www.all-energy.co.uk/__novadocuments/80806?v=635633926036100000 (accessed April 13, 2018).
  30. Aghahosseini S, Dincer I, Appl. Therm. Eng., 54, 35, 2013
  31. Razaaly N, Persico G, Congedo PM, Energy Procedia, 129, 1149, 2017
  32. Kwon S, Won W, Kim J, Renew. Energy, 97, 177, 2016
  33. Han S, Won W, Kim J, Energy, 129, 86, 2017
  34. Won W, Kwon H, Han JH, Kim J, Renew. Energy, 103, 226, 2017
  35. Kim MS, Won WY, Kim JY, Energy Conv. Manag., 143, 227, 2017
  36. Loh HP, Lyons J, White CW III, Process equipment cost estimation, DOE/NETL-2002/1169 (2002).
  37. Won WY, Maravelias CT, Renew. Energy, 114, 357, 2017
  38. Papadopoulos AI, Seferlis P, Materials and process systems for CO2 capture, (2017).
  39. EIA - Electricity Data https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a (accessed March 3, 2018).
  40. W10_TH_ Price Forecasts for Electric Motor CNG Compressor at Gas Station Project . EMERALD AACE 2017 . WEEKLY BLOG https://emeraldaace2017.com/2017/11/11/w10_th_-price-forecastsfor-electric-motor-cng-compressor-at-gas-station-project/ (accessed March 2, 2018).