Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 136-145, 2019
Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells
Proton-exchange membrane (PEM) fuel cells are one of the main candidates for propulsion systems of modern electric vehicles. However, appropriate water management is crucial to performance. Cell compression can affect the performance and water management of PEM fuel cells. Although the influence of cell compression on the transport of continuous water flow through the porous electrodes has been investigated, the influence of cell compression on the droplet dynamic behavior through these electrodes is not investigated thoroughly. Employing a pore-scale simulation method such as lattice Boltzmann method (LBM) is an excellent means for such investigation. In this study, LBM was applied to investigate the influence of compression of gas diffusion layer (GDL) on the removal of a water droplet from an electrode of a cell with interdigitated flow field. During removal process the droplet dynamic movement through five different GDLs (one without compression and the other four with four different levels of compression) was depicted and analyzed. The results reveal that the droplet experiences a faster removal process when the GDL is compressed. However, more increasing of compression does not result in a faster removal process, which indicates the existence of an optimum compression level for which the fastest removal process occurs.
[References]
  1. Ehsani M, Gao Y, Emadi A, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory and design, CRC Press, London (2012).
  2. Hongthong K, Pruksathorn K, Piumsomboon P, Sripakagorn P, Korean J. Chem. Eng., 24(4), 612, 2007
  3. Kim T, Lee H, Sim W, Lee J, Kim S, Lim T, Park K, Korean J. Chem. Eng., 26(5), 1265, 2009
  4. Fuel cell vehicles, https://en.wikipedia.org/wiki/Fuel_cell, 2016 (accessed 3 January 2016).
  5. Moon DJ, Ryu JW, Lee SD, Ahn BS, Korean J. Chem. Eng., 19(6), 921, 2002
  6. Nakrumpai B, Pruksathorn K, Piumsomboon P, Korean J. Chem. Eng., 23(4), 570, 2006
  7. Chen W, Jiang FM, Int. J. Hydrog. Energy, 41(20), 8550, 2016
  8. Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33(11), 3121, 2016
  9. Park S, Popov BN, Korean J. Chem. Eng., 31(8), 1384, 2014
  10. Bhlapibul S, Pruksathorn K, Korean J. Chem. Eng., 25(5), 1226, 2008
  11. Shojaeefard MH, Molaeimanesh GR, Nazemian M, Moqaddari MR, Int. J. Hydrog. Energy, 41(44), 20276, 2016
  12. Serincan MF, Pasaogullari U, J. Power Sources, 196(5), 1314, 2011
  13. Mahmoudi AH, Ramiar A, Esmaili Q, Energy Conv. Manag., 110, 78, 2016
  14. Tuber K, Pocza D, Hebling C, J. Power Sources, 124(2), 403, 2003
  15. Mortazavi M, Tajiri K, J. Power Sources, 245, 236, 2014
  16. Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153, 2004
  17. Mukherjee PP, Wang CY, Schulz VP, Kang Q, Becker J, Wiegmann A, ECS. Trans., 25, 1485, 2009
  18. Shi Z, Wang X, Guessous L, J. Fuel Cell. Sci. Technol., 7, 021012, 2010
  19. Wang Y, Chen KS, J. Electrochem. Soc., 158(11), B1292, 2011
  20. Chippar P, Kyeongmin O, Kang K, Ju H, Int. J. Hydrog. Energy, 37(7), 6326, 2012
  21. Tranter TG, Burns AD, Ingham DB, Pourkashanian M, Int. J. Hydrog. Energy, 40(1), 652, 2015
  22. Nam JH, Kaviany M, Int. J. Heat Mass Transf., 46(24), 4595, 2003
  23. Zhang FY, Yang XG, Wang CY, J. Electrochem. Soc., 153(2), A225, 2006
  24. Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329, 1998
  25. Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397, 2015
  26. Molaeimanesh GR, Googarchin HS, Moqaddam AQ, Int. J. Hydrog. Energy, 41(47), 22221, 2016
  27. Molaeimanesh GR, Akbari MH, Int. J. Hydrog. Energy, 39(16), 8401, 2014
  28. Molaeimanesh G, Akbari MH, Korean J. Chem. Eng., 31(4), 598, 2014
  29. Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm Sci., 51, 132, 2012
  30. Salah YB, Tabe Y, Chikahisa T, Energy Procedia, 28, 125, 2012
  31. Han B, Meng H, J. Power Sources, 217, 268, 2012
  32. Han B, Yu J, Meng H, J. Power Sources, 202, 175, 2012
  33. Hao L, Cheng P, J. Power Sources, 190(2), 435, 2009
  34. Bhatnagar PL, Gross EP, Krook M, Phys Rev., 94, 511, 1954
  35. Shan X, Chen H, Phys. Rev. E, 47, 1815, 1993
  36. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev. A, 43, 4320, 1991
  37. Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830, 1995
  38. Mohamad AA, Lattice Boltzmann method: fundamentals and engineering applications with computer codes, Springer, New York (2011).
  39. Sukop MC, Thorne DT, Lattice Boltzmann modeling, an introduction for geoscientists and engineers, Springer, Heidelberg (2007).
  40. Yuan P, Schaefer L, Phys. Fluids, 18, 042101, 2006
  41. Schulz VP, Becker J, Wiegmann A, Mukherjee PP, Wang CY, J. Electrochem. Soc., 154(4), B419, 2007
  42. Schladitz K, Peters S, Reinel-Bitzer D, Wiegmann A, Ohser J, Comput. Mater. Sci., 38, 56, 2006
  43. Zou Q, He X, Phys. Fluids, 9, 1591, 1997
  44. Kumbur EC, Sharp KV, Mench MM, J. Power Sources, 168(2), 356, 2007